logan3 said:
I also read that a lot of quantum chemistry problems and calculations are now solved by computer software, so would I be relegated to designing software for other scientists to use?
I do not see why you would call this "relegated", but this is indeed what many quantum chemists do. The primary object of research are normally not chemical systems, but (computational) methods for investigating chemical systems, and other meta-methods of this kind. This can encompass, for example, the development of robust and efficient electronic structure methods, methods for solving nuclear motion problems (vibrational structure, scattering, tunneling, etc), and sometimes initial applications of such new methods to actual chemical questions which were previously intractable. Theoretical chemists who concentrate on applying existing methods to interesting chemical questions (instead of primarily developing new methods) are often called "computational chemists".
In chemistry the division between method development (quantum chemistry) and method application (computational chemistry) is much stronger than in any other field of science I am aware of. Most theorists concentrate on exactly one of the two areas (although there are a few notable exceptions). The primary reason for this is that the skills and the knowledge required to perform these two tasks are very different. For example, to be a good computational chemist, in the first place you actually need to be a *chemist*; that means being able and willing to follow trends and developments in your primary fields in experimental chemistry and knowing if and how your calculations can advance it. For example, a good result in computational chemistry could be an ingenious way to elucidate the reaction mechanism of a catalyst, and based on this, design a better catalyst. In computational chemistry, you need to be able to judge the importance and relevance of experimental papers and procedures.
In contrast, these skills are not required in quantum chemistry, which more often than not could also be described as "applied quantum mechanics" and often boils down to a mix of theoretical physics and computer science. Here the primary skills lie in quantum mechanics (e.g., electronic structure theory), algorithm development, and programming. For example, a good result in quantum chemistry could be an ingenious way to compute electron repulsion integrals or reduce the computational scaling of a powerful electron correlation method, such that the methods become computationally cheaper and can be applied to larger chemical systems (and thus be used for better predictions in computational studies by computational chemists).
But quantum chemistry is not something which is done for the sake of itself. Quantum chemical methods are nowadays ubiquitous in real chemistry (e.g., at this moment, about one in five JACS papers contains some sort of quantum chemical calculation), and persons who are able to significantly advance the computational methodology are well regarded in the chemical community---even if many of them are not "real' chemists themselves.