What Values of \(a\) Satisfy the Equation Involving Floor Functions?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Function
Click For Summary

Discussion Overview

The discussion revolves around solving the equation involving floor functions: $\dfrac{1}{\left\lfloor{a}\right\rfloor}+\dfrac{1}{\left\lfloor{2a}\right\rfloor}=a-\left\lfloor{a}\right\rfloor+\dfrac{1}{3}$. Participants explore the values of the variable \(a\) that satisfy this equation, focusing on the implications of the floor function in the context of real numbers.

Discussion Character

  • Homework-related, Mathematical reasoning

Main Points Raised

  • One participant presents the equation and requests solutions for all real \(a\).
  • Another participant shares their solution, indicating an engagement with the problem.
  • A third participant acknowledges the contributions of the previous two, suggesting a collaborative atmosphere.

Areas of Agreement / Disagreement

The discussion does not reach a consensus on the solutions to the equation, as no specific values or methods are confirmed by all participants.

Contextual Notes

The discussion lacks detailed mathematical steps or assumptions that may be necessary for a complete understanding of the problem. The implications of the floor function on the equation's solutions are not fully explored.

Who May Find This Useful

Readers interested in mathematical problem-solving, particularly involving floor functions and real analysis, may find this discussion relevant.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve for all real $a$ of the equation below:

$\dfrac{1}{\left\lfloor{a}\right\rfloor}+\dfrac{1}{\left\lfloor{2a}\right\rfloor}=a-\left\lfloor{a}\right\rfloor+\dfrac{1}{3}$
 
Mathematics news on Phys.org
Note that $\{x\} = x - \lfloor x \rfloor$ never takes negative values in $\Bbb R$. As $\lfloor x \rfloor$ on the other hand is negative for negative real arguments, there is no solution for the equation in $\Bbb R^{-}$

We will split this equation into two cases. If $\{a\} < 1/2$, then it is clear that $\lfloor 2a \rfloor = 2\lfloor a\rfloor$ hence $$\frac{1}{\lfloor a \rfloor} + \frac{1}{\lfloor 2a \rfloor} = \frac1{\lfloor a \rfloor} + \frac{1}{2\lfloor a \rfloor} = \frac{3}{2} \frac1{\lfloor a \rfloor} = \{ a \} + \frac1{3} \Longrightarrow \frac{9}{2} = \lfloor a \rfloor \left ( 3 \{a\} + 1 \right ) \tag{+}$$

On the other hand, $$0 \leq \frac{3}{2} \frac1{\lfloor a \rfloor} = \{a\} - \frac13 < \frac56 \Longrightarrow \frac95 < \lfloor a \rfloor \leq \frac92$$

However, as $\lfloor a \rfloor$ is an integer, $\lfloor a \rfloor$ can be either $2$, $3$ or $4$. Using $(+)$, corresponding values of $\{ a \}$ are $5/12$, $1/6$ and $1/24$ respectively. Thus adding $\lfloor a \rfloor$ and $\{a\}$, we get the solutions $29/12$, $19/6$ and $97/24$ respectively.

For the $\{ a \} \geq 1/2$ case, note that $\lfloor 2a \rfloor = 2\lfloor a \rfloor + 1$ thus

$$\frac1{\lfloor a \rfloor} + \frac1{2\lfloor a \rfloor + 1} = \{a\} + \frac13 \geq \frac{5}{6} \Longrightarrow \frac{3\lfloor a \rfloor + 1}{2 \lfloor a \rfloor^2 + \lfloor a \rfloor} \geq \frac56 \Longrightarrow 13\lfloor a \rfloor + 6 \geq 10 \lfloor a \rfloor^2$$ Which is satisfied only for $\lfloor a \rfloor = 1$ (as $0$ is not invertible) but that's not possible, as the strict inequality holds : $$1 > \{a\} = \frac1{\lfloor a \rfloor} + \frac1{2\lfloor a \rfloor + 1} - \frac13 = \frac43 - \frac13 = 1$$

Thus we conclude that $29/12$, $19/6$ and $97/24$ are the only possible solutions.
 
Last edited:
Good solution by mathbalarka
here is mine

The $rhs \lt \dfrac{4}{3}$

let a = b + f where b is integral part and f fractional part <1

a cannot be 1 as LHS = ${3/2}$

if f > .5 integral part of 2a > 2 * integral part of a

f cannot be > .5 as for a = 2

LHS = $\dfrac{1}{2} + \dfrac{1}{5} \lt .5+\dfrac{1}{3}$

now LHS = $\dfrac{3}{2b} \ge \dfrac{1}{3}$ or $b \le 4.5$

so b need to be checked for 2,3,and 4 to give the values for a which is same as above.
 
Last edited:
Well done, both of you! And thanks for participating! :)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K