Note that $\{x\} = x - \lfloor x \rfloor$ never takes negative values in $\Bbb R$. As $\lfloor x \rfloor$ on the other hand is negative for negative real arguments, there is no solution for the equation in $\Bbb R^{-}$
We will split this equation into two cases. If $\{a\} < 1/2$, then it is clear that $\lfloor 2a \rfloor = 2\lfloor a\rfloor$ hence $$\frac{1}{\lfloor a \rfloor} + \frac{1}{\lfloor 2a \rfloor} = \frac1{\lfloor a \rfloor} + \frac{1}{2\lfloor a \rfloor} = \frac{3}{2} \frac1{\lfloor a \rfloor} = \{ a \} + \frac1{3} \Longrightarrow \frac{9}{2} = \lfloor a \rfloor \left ( 3 \{a\} + 1 \right ) \tag{+}$$
On the other hand, $$0 \leq \frac{3}{2} \frac1{\lfloor a \rfloor} = \{a\} - \frac13 < \frac56 \Longrightarrow \frac95 < \lfloor a \rfloor \leq \frac92$$
However, as $\lfloor a \rfloor$ is an integer, $\lfloor a \rfloor$ can be either $2$, $3$ or $4$. Using $(+)$, corresponding values of $\{ a \}$ are $5/12$, $1/6$ and $1/24$ respectively. Thus adding $\lfloor a \rfloor$ and $\{a\}$, we get the solutions $29/12$, $19/6$ and $97/24$ respectively.
For the $\{ a \} \geq 1/2$ case, note that $\lfloor 2a \rfloor = 2\lfloor a \rfloor + 1$ thus
$$\frac1{\lfloor a \rfloor} + \frac1{2\lfloor a \rfloor + 1} = \{a\} + \frac13 \geq \frac{5}{6} \Longrightarrow \frac{3\lfloor a \rfloor + 1}{2 \lfloor a \rfloor^2 + \lfloor a \rfloor} \geq \frac56 \Longrightarrow 13\lfloor a \rfloor + 6 \geq 10 \lfloor a \rfloor^2$$ Which is satisfied only for $\lfloor a \rfloor = 1$ (as $0$ is not invertible) but that's not possible, as the strict inequality holds : $$1 > \{a\} = \frac1{\lfloor a \rfloor} + \frac1{2\lfloor a \rfloor + 1} - \frac13 = \frac43 - \frac13 = 1$$
Thus we conclude that $29/12$, $19/6$ and $97/24$ are the only possible solutions.