What is the Proof for the Floor Function Challenge II Involving Primes?

In summary, the problem states that for two different prime numbers, the sum of the floors of their multiples divided by the larger prime is equal to half of the product of both primes subtracted by one. There are multiple solutions, but one was presented by user anemone on the mathhelpboards forum and another is planned to be posted later.
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Let $a$ and $b$ be two different primes. Prove that
$\displaystyle\left\lfloor\dfrac{a}{b} \right\rfloor+\left\lfloor\dfrac{2a}{b} \right\rfloor+\left\lfloor\dfrac{3a}{b} \right\rfloor+\cdots+\left\lfloor\dfrac{(b-1)a}{b} \right\rfloor=\dfrac{(a-1)(b-1)}{2}$.
 
Mathematics news on Phys.org
  • #2
For every $k \in \{1,2,\ldots,b-1\}$, $ka$ is not divisible by $b$ (or else $b$ divides $k$, which cannot happen). So for fixed $k$,

$\displaystyle \frac{ka}{b} - 1 < \left\lfloor\frac{ka}{b}\right\rfloor < \frac{ka}{b}$,

$\displaystyle \frac{(b-k)a}{b} - 1 < \left\lfloor\frac{(b-k)a}{b}\right\rfloor < \frac{(b-k)a}{b}$.

Adding the two inequalities, we get

$\displaystyle a - 2 < \left\lfloor\frac{ka}{b}\right\rfloor + \left\lfloor\frac{(b-k)a}{b}\right\rfloor < a$.

This forces

$\displaystyle \left\lfloor\frac{ka}{b}\right\rfloor + \left\lfloor\frac{(b-k)a}{b}\right\rfloor = a - 1$

Therefore

$\displaystyle \left\lfloor\frac{a}{b}\right\rfloor + \left\lfloor\frac{2a}{b}\right\rfloor + \cdots + \left\lfloor\frac{(b-1)a}{b}\right\rfloor$

$\displaystyle = \dfrac{\left\lfloor\frac{a}{b}\right\rfloor + \left\lfloor\frac{(b-1)a}{b}\right\rfloor}{2} + \dfrac{\left\lfloor\frac{2a}{b}\right\rfloor + \left\lfloor\frac{(b-2)a}{b}\right\rfloor}{2} + \cdots + \dfrac{\left\lfloor\frac{(b-1)a}{b}\right\rfloor + \left\lfloor\frac{a}{b}\right\rfloor}{2}$

$\displaystyle = \frac{a-1}{2} + \frac{a-1}{2} + \cdots + \frac{a-1}{2} (b-1\; \text{times})$

$\displaystyle = \frac{(a-1)(b-1)}{2}$.
 
  • #3
Euge said:
For every $k \in \{1,2,\ldots,b-1\}$, $ka$ is not divisible by $b$ (or else $b$ divides $k$, which cannot happen). So for fixed $k$,

$\displaystyle \frac{ka}{b} - 1 < \left\lfloor\frac{ka}{b}\right\rfloor < \frac{ka}{b}$,

$\displaystyle \frac{(b-k)a}{b} - 1 < \left\lfloor\frac{(b-k)a}{b}\right\rfloor < \frac{(b-k)a}{b}$.

Adding the two inequalities, we get

$\displaystyle a - 2 < \left\lfloor\frac{ka}{b}\right\rfloor + \left\lfloor\frac{(b-k)a}{b}\right\rfloor < a$.

This forces

$\displaystyle \left\lfloor\frac{ka}{b}\right\rfloor + \left\lfloor\frac{(b-k)a}{b}\right\rfloor = a - 1$

Therefore

$\displaystyle \left\lfloor\frac{a}{b}\right\rfloor + \left\lfloor\frac{2a}{b}\right\rfloor + \cdots + \left\lfloor\frac{(b-1)a}{b}\right\rfloor$

$\displaystyle = \dfrac{\left\lfloor\frac{a}{b}\right\rfloor + \left\lfloor\frac{(b-1)a}{b}\right\rfloor}{2} + \dfrac{\left\lfloor\frac{2a}{b}\right\rfloor + \left\lfloor\frac{(b-2)a}{b}\right\rfloor}{2} + \cdots + \dfrac{\left\lfloor\frac{(b-1)a}{b}\right\rfloor + \left\lfloor\frac{a}{b}\right\rfloor}{2}$

$\displaystyle = \frac{a-1}{2} + \frac{a-1}{2} + \cdots + \frac{a-1}{2} (b-1\; \text{times})$

$\displaystyle = \frac{(a-1)(b-1)}{2}$.

Wow...what terrific solution, so impressively laid out...well done, Euge! And thanks for participating.:)

I have at hand a solution that tackles the problem entirely differently and I would post it days later, in case there are more members want to play with this problem.
 
  • #4
Solution of other:

The statement involves two independent variables, $a$ and $b$ and $\dfrac{a}{b},\,\dfrac{2a}{b},\,\dfrac{3a}{b},\cdots,$ respectively. We might want to approach it using geometry approach.

Consider the case $a=5$ and $b=7$. The points $(k,\,\dfrac{5k}{7})$ where $k=1,\,2,\,\cdots,\,6$ each lie on the line $y=\dfrac{5k}{7}$ and $\displaystyle \sum_{k=1}^6\left\lfloor\dfrac{5k}{7} \right\rfloor$ equals the number of lattice points interior to the triangle with vertices $(0,\,0)$, $(7,\,0)$ and $(7,\,5)$. By symmetry, this number is one-half the number of lattice points in the rectangle with vertices $(0,\,0)$, $(0,\,5)$, $(7,\,0)$ and $(7,\,5)$. There are $4\times 6=24$ lattice points in that rectangle, which means the triangle with vertices $(0,\,0)$, $(7,\,0)$ and $(7,\,5)$ contains 12 interior lattice points.

The same goes through in the general case. The condition that $a$ and $b$ have no common factor assures us that none of the lattice points in the interior of the rectangle will fall on the line $y=\dfrac{ax}{b}$. Thus,

$\displaystyle \sum_{k=1}^{b-1}\left\lfloor\dfrac{ka}{b} \right\rfloor=\dfrac{\text{total number of lattice poins in the interior of the rectangle}}{2}=\frac{(a-1)(b-1)}{2}$.
 
  • #5
Interestingly done anemone. Reminds me of a post I made long ago in http://mathhelpboards.com/number-theory-27/quadratic-reciprocity-9722.html at the number theory forum.
 

1. What is the Floor Function Challenge II?

The Floor Function Challenge II is a mathematical problem that involves finding the largest integer that is less than or equal to a given number. It is an extension of the original Floor Function Challenge and is often used in computer programming and number theory.

2. How is the Floor Function Challenge II different from the original challenge?

The Floor Function Challenge II is different from the original challenge because it involves finding the largest integer that is less than or equal to a given number, whereas the original challenge only required finding the largest integer less than a given number. This added criteria makes the problem more difficult and requires a different approach to solving it.

3. What is the purpose of the Floor Function Challenge II?

The purpose of the Floor Function Challenge II is to test one's understanding of the floor function and their ability to apply it in solving a problem. It also helps to develop critical thinking and problem-solving skills, which are essential in many fields of science and mathematics.

4. What are some real-world applications of the Floor Function Challenge II?

The Floor Function Challenge II has many real-world applications, such as in computer programming, where it is used to round down a number to the nearest integer. It is also used in number theory to find the greatest integer divisor of a given number. In finance, it can be used to calculate compound interest or to round down stock prices.

5. How can I improve my skills in solving the Floor Function Challenge II?

To improve your skills in solving the Floor Function Challenge II, you can practice regularly and familiarize yourself with different approaches and techniques for solving it. You can also seek guidance from experienced mathematicians or participate in online forums and discussions to learn from others. Additionally, studying the properties and applications of the floor function can also help in improving your skills.

Similar threads

Replies
9
Views
2K
  • General Math
Replies
3
Views
1K
  • General Math
Replies
4
Views
1K
Replies
1
Views
1K
  • Math POTW for Secondary and High School Students
Replies
1
Views
887
  • General Math
Replies
2
Views
1K
  • General Math
Replies
2
Views
1K
Replies
4
Views
1K
  • Linear and Abstract Algebra
Replies
2
Views
1K
Replies
5
Views
1K
Back
Top