MHB What values of k make x^2 + 12x + k factorable over the integers?

Click For Summary
The discussion focuses on finding positive values of k that make the quadratic expression x^2 + 12x + k factorable over the integers. To factor the expression, the discriminant must be a perfect square, leading to the condition that 144 - 4k must equal a perfect square. This results in a set of equations that can be solved for k, yielding specific integer values. The participants explore various mathematical approaches and examples to identify these values. Ultimately, the goal is to determine all suitable k values that satisfy the factorability condition.
judytl3
Messages
1
Reaction score
0
try to determine all the positive values of k for which x^2 + 12x + k is factorable over the integers.
 
Mathematics news on Phys.org
Here's my solution:

Set $x^{2}+12x+k=(x+a)(x+b)=x^{2}+(a+b)x+k.$
Evidently, then, the values of $k$ are products of numbers whose sum is $12$. The possibilities are as follows:
\begin{align*}
1+11=12& \to k=11\\
2+10=12& \to k=20\\
3+9=12& \to k=27\\
4+8=12& \to k=32\\
5+7=12& \to k=35\\
6+6=12& \to k=36.
\end{align*}
Then they repeat.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K