Undergrad What was the four-momentum meant to include?

  • Thread starter Thread starter dsaun777
  • Start date Start date
  • Tags Tags
    Mass Relativity
Click For Summary
SUMMARY

The four-momentum, denoted as Pν, in the context of relativity encompasses all mass and energy contributions from various fields, including electromagnetic, strong, and gravitational forces. It is applicable primarily to point particles or entities that can be approximated as such, integrating contributions to their energy and momentum. For fields that cannot be treated as point particles, a stress-energy tensor is necessary to derive the four-momentum. The integration of the stress-energy tensor over a spacelike 3-surface allows for the calculation of four-momentum, contingent upon the characteristics of the spacetime involved.

PREREQUISITES
  • Understanding of four-momentum in relativity
  • Familiarity with stress-energy tensors
  • Knowledge of spacetime concepts and congruences
  • Basic principles of quantum field theory and particle physics
NEXT STEPS
  • Study the derivation and applications of the stress-energy tensor in general relativity
  • Explore the implications of non-hypersurface orthogonal congruences in energy-momentum calculations
  • Learn about the integration of energy-momentum density over spacelike surfaces
  • Investigate the relationship between spin and four-momentum in relativistic physics
USEFUL FOR

Physicists, particularly those specializing in relativity, quantum field theory, and particle physics, as well as students seeking to deepen their understanding of energy-momentum concepts in advanced theoretical frameworks.

dsaun777
Messages
296
Reaction score
39
Hello,
was the four-momentum of relativity, Pν, supposed to include all mass and energy contributions from every field i.e. electromagnetic, strong, gravitational...
Or is it just the momentum of what was known in Einstein's time?
 
Physics news on Phys.org
Four momentum only works for point particles, or things you can approximate as point particles, but includes every contribution to their energy and momentum. For example, most of the mass of a proton is due to the binding energy of the quarks, so there's an awful lot of strong force contributing to the ##m## in a "ball of mass ##m##" that you would treat as a point particle.

For fields and the like (when you can't lump them in to a point particle) you'd need a stress-energy tensor.
 
  • Like
  • Informative
Likes Dale, topsquark and berkeman
Ibix said:
Four momentum only works for point particles, or things you can approximate as point particles, but includes every contribution to their energy and momentum. For example, most of the mass of a proton is due to the binding energy of the quarks, so there's an awful lot of strong force contributing to the ##m## in a "ball of mass ##m##" that you would treat as a point particle.

For fields and the like (when you can't lump them in to a point particle) you'd need a stress-energy tensor.
Can you then contract and integrate the stress-energy tensor to arrive at some four-momentum? I suppose it depends on what kind of spacetime you are working in right?
 
If I have this straight, if you have a family of observers following timelike paths that form a congruence ##u^a## then the energy momentum density they measure at an event is ##u_aT^{ba}##. You integrate over some finite region of a spacelike 3-surface (formally, an achronal one) that encloses your "point particle" and you get its four momentum.

I may not have that quite right - sure others will correct me if so.
 
  • Like
Likes Dale, dsaun777 and topsquark
Ibix said:
If I have this straight, if you have a family of observers following timelike paths that form a congruence ##u^a## then the energy momentum density they measure at an event is ##u_aT^{ba}##. You integrate over some finite region of a spacelike 3-surface (formally, an achronal one) that encloses your "point particle" and you get its four momentum.

I may not have that quite right - sure others will correct me if so.
This is pretty much correct. The only clarification I would make is that the congruence ##u^a## describes the worldlines of pieces of the matter whose energy-momentum density you want to obtain, not "observers". Assuming that these worldlines occupy a suitably small "world tube", surrounded by enough vacuum to treat the matter as an isolated region, then, if one is OK with modeling the matter as a point particle, one would do the integral you describe over the intersection of the world tube with an achronal 3-surface to obtain the energy-momentum density 4-vector for the matter at the "point" that represents that intersection.

One other caution here is that, if the congruence ##u^a## is not hypersurface orthogonal (meaning it is impossible to find an achronal 3-surface that is everywhere orthogonal to ##u^a##, which is what we would naturally want to support an interpretation as "the matter at some instant of time"), modeling the matter by a simple energy-momentum 4-vector will not be enough. Heuristically, the "point particle" will have spin as well as 4-momentum, and it will take some additional geometric object besides the 4-momentum density vector to describe the spin.
 
  • Like
Likes Ibix and dsaun777
PeterDonis said:
This is pretty much correct. The only clarification I would make is that the congruence ##u^a## describes the worldlines of pieces of the matter whose energy-momentum density you want to obtain, not "observers".
Ah, right - that makes more sense. It was bothering me how the ##u^a## would disappear in the integral (which it would need to do if it really were some arbitrary family of observers and the result had to be an invariant). But if it's part of the specification of the material then of course I don't expect it to vanish. Thanks.
 
In an inertial frame of reference (IFR), there are two fixed points, A and B, which share an entangled state $$ \frac{1}{\sqrt{2}}(|0>_A|1>_B+|1>_A|0>_B) $$ At point A, a measurement is made. The state then collapses to $$ |a>_A|b>_B, \{a,b\}=\{0,1\} $$ We assume that A has the state ##|a>_A## and B has ##|b>_B## simultaneously, i.e., when their synchronized clocks both read time T However, in other inertial frames, due to the relativity of simultaneity, the moment when B has ##|b>_B##...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
16
Views
2K
  • · Replies 67 ·
3
Replies
67
Views
6K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 28 ·
Replies
28
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K