Sagittarius A-Star
Science Advisor
- 1,399
- 1,058
You missed, that the mass of each paticle after the explosion is not ##\frac{1}{2}m##, but ##\frac{1}{2\gamma_u}m## (mass defect). Correction of the right side of your equation:bob012345 said:I was trying to show ##-\gamma_v(v)m v = \large \gamma_1(v_1) \frac{mv_1}{2} +\gamma_2(v_2) \frac{mv_2}{2}## with ## v_1 = \frac{u-v}{1 -\Large \frac{uv}{c^2}}## and ## v_2 = \frac{-u-v}{1 +\Large \frac{uv}{c^2}}##.
##\gamma_1(v_1) \frac{mv_1}{2\gamma_u} +\gamma_2(v_2) \frac{mv_2}{2\gamma_u}##
Then I replace each ##\gamma_1(v_1) ## and ##\gamma_2(v_2) ## according to:
vanhees71 said:$$\gamma'=\gamma_u \gamma_v \left (1-\frac{\vec{v} \cdot \vec{u}}{c^2} \right).$$
##\gamma_v\gamma_u (1-\frac{uv}{c^2}) \frac{mv_1}{2\gamma_u} +\gamma_v\gamma_u (1+\frac{uv}{c^2}) \frac{mv_2}{2\gamma_u}##
Then I replace ##v_1## and ##v_2## according to:
bob012345 said:## v_1 = \frac{u-v}{1 -\Large \frac{uv}{c^2}}## and ## v_2 = \frac{-u-v}{1 +\Large \frac{uv}{c^2}}##
##\gamma_v \frac{m(u-v)}{2} +\gamma_v \frac{m(-u-v)}{2} = -\gamma_v mv##
I think, the calculation in posting #59 (Lorentz-transformation of 4-momentum) is easier.
Last edited: