I Conservation of momentum in a collision

Click For Summary
Conservation of momentum in special relativity necessitates the inclusion of the gamma factor due to the relativistic definition of momentum, which differs from the Newtonian approach. In special relativity, momentum is not conserved unless the gamma factor is accounted for, as it reflects the effects of time dilation and velocity transformation. The discussion highlights that using Newtonian momentum leads to inconsistencies when analyzing collisions at relativistic speeds. The relationship between energy and momentum in relativistic physics further complicates the situation, as energy can increase without bound while momentum remains finite. Understanding these principles is essential for accurately describing particle interactions in high-energy physics scenarios.
  • #61
bob012345 said:
I was trying to show ##-\gamma_v(v)m v = \large \gamma_1(v_1) \frac{mv_1}{2} +\gamma_2(v_2) \frac{mv_2}{2}## with ## v_1 = \frac{u-v}{1 -\Large \frac{uv}{c^2}}## and ## v_2 = \frac{-u-v}{1 +\Large \frac{uv}{c^2}}##.
You missed, that the mass of each paticle after the explosion is not ##\frac{1}{2}m##, but ##\frac{1}{2\gamma_u}m## (mass defect). Correction of the right side of your equation:

##\gamma_1(v_1) \frac{mv_1}{2\gamma_u} +\gamma_2(v_2) \frac{mv_2}{2\gamma_u}##

Then I replace each ##\gamma_1(v_1) ## and ##\gamma_2(v_2) ## according to:
vanhees71 said:
$$\gamma'=\gamma_u \gamma_v \left (1-\frac{\vec{v} \cdot \vec{u}}{c^2} \right).$$

##\gamma_v\gamma_u (1-\frac{uv}{c^2}) \frac{mv_1}{2\gamma_u} +\gamma_v\gamma_u (1+\frac{uv}{c^2}) \frac{mv_2}{2\gamma_u}##

Then I replace ##v_1## and ##v_2## according to:
bob012345 said:
## v_1 = \frac{u-v}{1 -\Large \frac{uv}{c^2}}## and ## v_2 = \frac{-u-v}{1 +\Large \frac{uv}{c^2}}##

##\gamma_v \frac{m(u-v)}{2} +\gamma_v \frac{m(-u-v)}{2} = -\gamma_v mv##

I think, the calculation in posting #59 (Lorentz-transformation of 4-momentum) is easier.
 
Last edited:
  • Like
Likes bob012345 and PeroK
Physics news on Phys.org
  • #62
How about an appeal to empiricism? Particle accelerators demonstrate every day that the quantity ##E \vec v## is conserved even as ##v \rightarrow 1##, whereas ## m \vec v ## isn't.
 
  • Like
Likes vanhees71, Sagittarius A-Star and PeroK
  • #63
SiennaTheGr8 said:
How about an appeal to empiricism? Particle accelerators demonstrate every day that the quantity ##E \vec v## is conserved even as ##v \rightarrow 1##, whereas ## m \vec v ## isn't.
The appeal to empiricism is correct. Particle accelerators demonstrate, that the momentum of an isolated system is conserved, as the momentum of a particle is defined as ##\vec p = p_t\frac{\vec v}{c}##.
 
Last edited:
  • #64
Sagittarius A-Star said:
You missed, that the mass of each paticle after the explosion is not ##\frac{1}{2}m##, but ##\frac{1}{2\gamma_u}m## (mass defect). Correction of the right side of your equation:

##\gamma_1(v_1) \frac{mv_1}{2\gamma_u} +\gamma_2(v_2) \frac{mv_2}{2\gamma_u}##

Then I replace each ##\gamma_1(v_1) ## and ##\gamma_2(v_2) ## according to:##\gamma_v\gamma_u (1-\frac{uv}{c^2}) \frac{mv_1}{2\gamma_u} +\gamma_v\gamma_u (1+\frac{uv}{c^2}) \frac{mv_2}{2\gamma_u}##

Then I replace ##v_1## and ##v_2## according to:##\gamma_v \frac{m(u-v)}{2} +\gamma_v \frac{m(-u-v)}{2} = -\gamma_v mv##

I think, the calculation in posting #59 (Lorentz-transformation of 4-momentum) is easier.
I sure did miss that! Thanks, that made it work out. I know that wasn't the best way to attempt the problem but I was just trying to follow the logic of the video. I also did it with 4-momentum notation and transformation and it was a whole lot easier!
 
Last edited:
  • Like
Likes Sagittarius A-Star
  • #65
Grasshopper said:
But first, let me give the question a final phrasing that is as clear as I can get it: How do I show that classical momentum is not conserved in a universe where coordinate transformations are Lorentz transformations?
Here's a simple example:

A mass of ##m##, moving with velocity ##v## collides with a stationary mass of ##3m##. Conservation of classical momentum results in the mass ##m## having velocity ##-\frac v 2## and the mass of ##3m## having velocity ##\frac v 2## after the collision.

And, if we transform to a different frame using the Galilean transformation, then we see that momentum is conserved in all other reference frames.

If, however, we transform to the initial rest frame of the mass ##m## and use the relativistic velocity transformation for the classical velocities, then we have velocities for the two masses of $$v_m = \frac{-3v/2}{1 + v^2/2c^2} \ \text{and} \ v_{3m} = \frac{-v/2}{1 - v^2/2c^2}$$
In this new frame, the total momentum before the collision was ##-3mv##; and, the total momentum after the collision is $$-\frac{3mv}{2}(\frac 1{1+ v^2/2c^2} + \frac 1{1- v^2/2c^2}) = -3mv(\frac{1}{1 - v^4/4c^4})$$ Which is not equal to the initial momentum in that frame. In other words, if classical momentum is conserved in the rest frame of one particle, then under the Lorentz Transformation (relativistic velocity transformation), momentum is not conserved in the rest frame of the other particle.
 
  • Like
Likes vanhees71 and Grasshopper
  • #66
Excellent explanation.
Thank you for coming back this. It is interesting, as PeterDonis pointed out in post #42, that you only have two choices.

But seeing it this way helps me get a better a snapshot of all the balls that were being juggled by these people early in the 20th century trying to figure special relativity out. Perhaps it’s not useful for learning physics, but I see it as useful for getting a better grasp on the history of physics discoveries.
 
  • #67
@Grasshopper

If you're interested in the history here, you'll want to read the "Non-Newtonian Mechanics" section of this paper by Lewis and Tolman from 1909.
 
  • Like
Likes Grasshopper
  • #68
This is obviously an interesting historical source but not a good text to learn the physics, because it uses the outdated concept of "relativistic mass".
 
  • Like
Likes Grasshopper and SiennaTheGr8

Similar threads

Replies
21
Views
3K
Replies
35
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
38
Views
700
  • · Replies 47 ·
2
Replies
47
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
Replies
13
Views
1K
Replies
36
Views
5K
  • · Replies 3 ·
Replies
3
Views
3K