I What were the real results of the photoelectric effect experiment?

pkc111
Messages
224
Reaction score
26
TL;DR
I am confused about information regarding the effect of light frequency on photocurrent in the Lenard's apparatus.
Pearson Physics 12 states:
"When the light sources have the same intensity but different frequencies, they produce the same maximum current"

However, Phet Simulation Photoelectric Effect seems to show that photocurrent changes with light frequency (eg see below for different photocurrents at 179 nm and 414 nm incident light wavelengths on sodium:

1654308153203.png

1654308178294.png
 
Physics news on Phys.org
jedishrfu said:
Khan Academy has a good description of the experiment and results found

https://www.khanacademy.org/science/physics/quantum-physics/photons/a/photoelectric-effect
Hmmm. That page doesn't appear to be in line with the PhET simulation, as it says that the electric current is proportional to the intensity of the light, not the frequency, whereas the PhET simulation has current increase as both intensity and frequency increase.
 
Ironically in almost all treatments in physics books (even at the university level) in
$$\hbar \omega=E_{\text{kin}}+W_B$$
for the famous experiment by Millikan with the stopping voltage the constant ##W_B## is quoted wrongly as the binding energy of the electrons in the cathode, rather it's the binding energy of the anode [1]. To establish this, by the way, took Millikan years, while the measurement of Plancks constant ##h=2 \pi \hbar## was pretty right from the very beginning.

[1] J. Rudnick, D. Tannhauser, Concerning a widespread error in the description of the photoelectric
effect, Am. J. Phys. 44, 796 (1976).
https://doi.org/10.1119/1.10130
 
  • Informative
  • Like
Likes malawi_glenn and Delta2
vanhees71 said:
Ironically in almost all treatments in physics books (even at the university level) in
$$\hbar \omega=E_{\text{kin}}+W_B$$
for the famous experiment by Millikan with the stopping voltage the constant ##W_B## is quoted wrongly as the binding energy of the electrons in the cathode, rather it's the binding energy of the anode [1]. To establish this, by the way, took Millikan years, while the measurement of Plancks constant ##h=2 \pi \hbar## was pretty right from the very beginning.

[1] J. Rudnick, D. Tannhauser, Concerning a widespread error in the description of the photoelectric
effect, Am. J. Phys. 44, 796 (1976).
https://doi.org/10.1119/1.10130

Actually, even that is not as clear-cut.

The nature of what a "work function" is is more complicated than such a simple answer. For example, in many instances, it is treated as simply the image charge potential of an electron emitted very near the surface of the material, thus creating an image charge of itself. The work function then is the minimum energy for this electron to overcome the image potential of itself.

See, for example, Pg. 10 of this article, which is a common usage of work function in accelerator physics and photoinjectors:

https://indico.cern.ch/event/218284...ts/352241/490774/Part_1_-Electron_sources.pdf

It is why one can modify the work function via Schottky effect, resulting in a lower work function and thus, higher electron emission and higher QE.

Zz.
 
  • Like
  • Informative
Likes Son Goku, vanhees71 and berkeman
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
This is still a great mystery, Einstein called it ""spooky action at a distance" But science and mathematics are full of concepts which at first cause great bafflement but in due course are just accepted. In the case of Quantum Mechanics this gave rise to the saying "Shut up and calculate". In other words, don't try to "understand it" just accept that the mathematics works. The square root of minus one is another example - it does not exist and yet electrical engineers use it to do...
Back
Top