I don't know what you mean by "Bell type probability" since you have said that you
aren't calculating the probabilities that the source will emit particles with different combinations of predetermined results for each angle; or did I misunderstand you there? You certainly haven't provided a "counterexample" to Bell in the form of a local realistic
physical model, i.e. one where you can give us some local hidden variables associate with the particle and rules for how the variables together with the polarizer angle determine (in a probabilistic or deterministic way) the outcome of each measurement, with the rules obeying locality (so that all values of variables and other events can only be causally influenced by values/events in their past light cone). If you had an actual local realist physical model you would be able to use it to meet the challenge I offered earlier:
But you said you wouldn't be able to win at this challenge. So please don't continue to assert you have a local realist model or a counterexample to Bell if you don't even understand the notion of "local realism" well enough to see what this would actually entail. As you know this forum is not meant to be a platform for people who think they have made some brilliant discovery which destroys some mainstream result, when you asked if I thought it would be appropriate to start a thread like this I offered the opinion that it would be OK if you were here in a spirit of
learning and being willing to listen to explanations as to why your argument doesn't falsify Bell's theorem, if you aren't willing to do that and just want to confidently assert that you have done so, then I don't think the discussion should continue on this forum.
As I said in my previous post #25, I would like you to use the standard type of notation for angles, where individual angles are defined relative to some fixed coordinate angles and differences between two angles are defined in some fixed way, like ab=a-b. If you think the terminology of "bi-angles" still makes sense in this context, then please explain clearly what you mean, hopefully using a numerical example where we have definite angles for a,b,c and can thus calculate any angles like ab and ac. If you're just saying that the
probabilities of certain observable results may be identical for some combinations of angles, then certainly I agree, for example if we pick a=240, b=120 and c=0 then the probability of ++ for
any combination of these angles will be 3/8 according to equation (7) on the Bell inequality[/url] page. But if you're saying something more than that, please explain more clearly.
Can you be more specific? What precise outcome does P1 give the probability of? And likewise for P2, P3, P4, P5, P6, P7, and P8? And do you understand that this is
not what P1-P8 are defined to mean on the Sakurai's Bell inequality page, that there they are supposed to be probabilities for different combinations of predetermined results determined by hidden variables, not probabilities of observable outcomes?
Also, if P1-P8 are simply probabilities of observable outcomes, then why is it that you still seem to calculate P(a+, c+) = P2 + P4 and P(c+, b+) = P3 + P7? These equations make perfect sense if P1-P8 are predetermined results as on the wiki page, but I have no idea why an observable outcome like P(a+,c+) would be the sum of the probabilities of two other observable outcomes.
Of course, that's why I keep asking for clarification on your terms, and asking for numerical examples, and saying things like "this thread would be a lot more productive if you would respond to my requests for clarification and numerical examples instead of just repeating the same impenetrable terminology which seems to make sense only to you". You can't just refer me back to the OP because your explanations there were no use to me!
Not in any way that makes sense to me, just with some incomprehensible jargon that seems to be your own private language, not any standard mathematical terminology I'm familiar with. For example, you say "This follows from the topological fact re spatial relations here: ab may be constructed in two ways"...what is a "topological fact re spatial relations", and what does it mean to "construct" ab? Isn't ab just the angular difference between two polarizers at angles a and b, i.e. isn't it just a-b? That's what an angular difference is normally defined to mean by everyone I've ever seen talking about the "angle between" two things!
Why? What physical or geometric considerations lead you to think P(a+, c+) = P2 + P4 and P(c+, b+) = P3 + P7, but that P3 + P4 is only "one-half the average"? Again since you seem to be defining P1-P8 in a totally different way than on the wikipedia page, it would really be helpful if you would tell us what observable outcomes P1-P8 are each supposed to give the probability
of.
This average could also be derived from the QM average, calculated over each angle value; i.e., directly from QM's one-angle calculations, done twice, one for each value of the 2-valued ab.
Your notion of "focusing" on 2 angles or "reference angles" are similarly incomprehensible to me, I'm just talking about angles in the standard way that physicists always talk about angles, defining them relative to some fixed coordinate system, see post #25. As I requested there, I would like you to start using this sort of standard definition of angles as well, if your argument really revolves around saying there is something fundamentally flawed about defining angles relative to a fixed coordinate system and that we
must use your incomprehensible alternative definitions, then your argument really is hopelessly crackpot and I am not interested in continuing.
Really? What angles do you think QM can't handle? If you have trouble with the standard notation for defining angles, could you draw a picture of polarizers at different orientations and show graphically what angles in the picture you think QM can't describe?
Again it's pretty clear you don't understand what "local and realistic" even mean, if you admit you can't answer my simulation challenge above but still think you have a local and realistic "model". Again if you are here in the spirit of learning rather than just here to proclaim your glorious victory over Bell, please stop making such claims and admit there may be some fault in your understanding of the notion of local realism. For example, did you completely understand the definition of local realism I gave in my [post=3154224]post #20 to Avodyne[/post]? If not we might use that as a starting point.
No, I have no idea what either of these terms mean, that's why I keep asking for clarifications. Please explain using either a numerical or diagrammatic example, not just strange abstract verbal discussions and equations where you haven't explained the meaning of the terms (like your using equations with P1 or ab without explaining what these mean physically) or where the equations come from (like why you think it should be true that ab = ac + bc
and ac = ac - bc).
If the experiment is with a
Stern-Gerlach apparatus this is pretty straightforward since the apparatus creates a magnetic field and "up" would just mean in the direction of magnetic North while "down" would mean in the direction of magnetic South. With photons, I believe + or - tells you whether the photon passed through the polarizer and was detected by the detector behind it, or whether it was reflected by the polarizer and detected by the other detector (see the diagram of the "two-channel polarizer" on the
CHSH inequality page)
If you use a standard notation for labeling orientations with angles, then each orientation has a unique angle. If your argument is that it is somehow impossible or forbidden to use this type of standard notation where there's a one-to-one relation between orientations and angles, then it seems to me you're just confused about basic geometry and at the very least I want to see a diagram of an orientation that you think cannot be assigned a unique angle using the standard procedure (make sure to draw both the orientation and the x-axis of the fixed coordinate system).
Um, how could you possible get that from my comment above? I said that QM only fails to give the Ps in the table
if those Ps are understood to have the standard meaning of predetermined results for each possible angle[/b], but you have said this is not what the Ps in your model mean at all, with comments like (from post #10) "I am providing the Ps for different outcomes under the defined tripartite setup; introducing the third orientation to be consistent with Bell and Sakurai; recognizing that we can only test for one angle (two orientations) in anyone physical test." As I keep telling you, the Ps on the wiki page aren't supposed to represent measured outcomes at all, rather they represent predetermined facts about what the results will be for each of the 3 possible angles, these predetermined facts based on hidden variables which human experimenters have no way of knowing. What's more, in a more recent post I asked you:
And in the post of yours I am responding to right now (post #24) you responded:
Your "next post" did not actually explain your disagreement...but look, if you disagree with point #1, then you disagree that there are predetermined answers for all three angles, so you cannot possibly be defining your Ps in the same way as the wikipedia page! On the wikipedia page, P1-P8 specifically refer to the probabilities of different combinations of hidden predetermined results for all three angles! How many times do I have to repeat this, and how many times do I have to ask you what you mean when you write P1-P8 before you will give me a straight answer? If they are supposed to represent probabilities of some observable results, then your comment "So QM does not give the Ps in the Table, and the model does" is clearly wrong, since as I already stated very clearly in the quote you were responding to there, "QM certainly delivers probabilities for all measurable outcomes."
Huh? Again, if you disagree with my point #1 above, then you disagree that there are hidden "predetermined results" for each possible angle, so how can you possibly think you can "identify the Ps in the BI" when these are supposed to be the probabilities of different predetermined results for each possible angle?
No, it certainly doesn't. You have denied that you think the hidden variables associated with each particle after emission give it predetermined results for each possible angle, and if you changed your mind and accepted this, it would be very trivial to show it must be true that P(a+, b+) = P3 + P4 and P(a+, c+) = P2 + P4 and P(c+, b+) = P3 + P7.
Please stop behaving like a crackpot and confidently proclaiming you have overturned Bell while ignoring all possibility that all the criticisms (such as the criticism that you don't seem to even understand what 'local realism' means) have any validity. Again, if you're here to learn and try to understand why the argument might be flawed that's fine, if you're just here to announce your earth-shattering discovery please use another forum.
What does "each ab" even mean, geometrically or physically? I know of only one ab, the angle between the polarizer (or Stern-Gerlach device) which is at angle a relative to some fixed axis, and the polarizer (or Stern-Gerlach device) which is at angle b relative to the same axis.