Can anyone see where the flaw is in the developement below, where I prove that (g o f)'(x)=g'(f(x)) instead of g'(f(x))f'(x), as it should be.(adsbygoogle = window.adsbygoogle || []).push({});

Consider the usual hypothese under which the chain rule for real-valued function applies.

Consider [itex] \epsilon>0[/itex]. Since g is differentiable at f(x_0), there exists [itex] \delta_1(\epsilon)>0[/itex] such that [itex]|y-f(x_0)|<\delta_1(\epsilon) [/itex] implies [itex]|g(y)-g(f(x_0))-g'(f(x_0))(y-f(x_0))|\leq\epsilon|y-f(x_0)|[/itex]

On the other hand, f being differentiable at x_0, enjoys the Lipschitz property there. That is to say, there exists positive constants c and M such that [itex]|x-x_0|<c [/itex] implies [itex] |f(x)-f(x_0)|\leq M|x-x_0|[/itex].

So for [itex]\delta=\min(c,\delta_1(\epsilon/M)/M)[/itex], we have that [itex]|x-x_0|<\delta [/itex] implies [itex]|f(x)-f(x_0)|\leq M|x-x_0|<M\delta\leq M\delta_1(\epsilon/M)/M= \delta_1(\epsilon/M)[/itex]

which in turns implies that

[tex]|g(f(x))-g(f(x_0))-g'(f(x_0))(f(x)-f(x_0))|\leq(\epsilon/M) |f(x)-f(x_0)|\leq (\epsilon/M)M|x-x_0| = \epsilon |x-x_0| [/tex]

And this is equivalent to saying that (g o f)'(x) = g'(f(x))...

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# What's wrong with this proof of the chain rule

**Physics Forums | Science Articles, Homework Help, Discussion**