Graduate Can Einstein Tensor be the Product of Two 4-Vectors?

Click For Summary
SUMMARY

The discussion centers on the representation of the Einstein tensor in terms of 4-vectors, specifically in the context of the stress-energy tensor (SET) for a perfect fluid, referred to as "dust." According to Misner, Thorne, and Wheeler in "Gravitation," the SET can be expressed as T(E,p) = (E,p)×(E,p)/[V(E² – p²)½]. However, this representation is only valid under idealized conditions, specifically when pressure is zero. When nonzero pressure is introduced, the SET cannot be expressed purely as a product of 4-vectors, as noted in equation 5.21 of the same text.

PREREQUISITES
  • Understanding of Einstein's field equations, G = 8πGT.
  • Familiarity with the concept of the stress-energy tensor (SET).
  • Knowledge of 4-vectors and their mathematical representation.
  • Basic principles of general relativity as outlined in "Gravitation" by Misner, Thorne, and Wheeler.
NEXT STEPS
  • Study the implications of pressure on the stress-energy tensor in general relativity.
  • Explore the derivation and applications of equation 5.21 from "Gravitation" by Misner, Thorne, and Wheeler.
  • Investigate the mathematical properties of 4-vectors in the context of general relativity.
  • Learn about the role of the metric tensor in solving Einstein's field equations.
USEFUL FOR

This discussion is beneficial for physicists, particularly those specializing in general relativity, as well as students and researchers interested in the mathematical formulations of gravitational theories and the behavior of stress-energy tensors in various physical scenarios.

empdee4
Messages
15
Reaction score
2
TL;DR
For particles of uniform mass and uniform momentum, stress-energy tensor can be written as product of two 4-vectors, can Einstein tensor be written in the same way?
In Gravitation by Misner, Thorne and Wheeler (p.139), stress-energy tensor for a single type of particles with uniform mass m and uniform momentum p (and E = p2 +m2) ½ ) can be written as a product of two 4-vectors,T(E,p) = (E,p)×(E,p)/[V(E2 – p2 )½ ]
Since Einstein equation is G = 8πGT, I am wondering if the left hand side, Einstein tensor, can also be written in the same way,
G(T,X) = (T,X)×(T,X)/[V (T2 – X2 )½ ]
If not, in what special case, or in what approximation, it can be expressed this way.
Thanks very much,
 
Physics news on Phys.org
empdee4 said:
In Gravitation by Misner, Thorne and Wheeler (p.139), stress-energy tensor for a single type of particles with uniform mass m and uniform momentum p (and E = p2 +m2) ½ ) can be written as a product of two 4-vectors
Basically this is the SET of a perfect fluid with zero pressure, usually called "dust" in the literature. But this is a highly idealized situation. As soon as you add nonzero pressure, the SET can no longer be expressed purely as a product of 4-vectors; see the very next page of MTW (equation 5.21).

empdee4 said:
Since Einstein equation is G = 8πGT, I am wondering if the left hand side, Einstein tensor, can also be written in the same way
Of course, just divide multiply ##T## by ##8 \pi##. That's what the equation says. But, as noted above, this is a highly idealized situation.
 
Last edited:
PeterDonis said:
Basically this is the SET of a perfect fluid with zero pressure, usually called "dust" in the literature. But this is a highly idealized situation. As soon as you add nonzero pressure, the SET can no longer be expressed purely as a product of 4-vectors; see the very next page of MTW (equation 5.21).Of course, just divide ##T## by ##8 \pi##. That's what the equation says. But, as noted above, this is a highly idealized situation.
Thanks very much for explanation.

Just not clear what T / 8π means.
 
empdee4 said:
Thanks very much for explanation.

Just not clear what T / 8π means.
It just means that each element of the Einstein tensor is equal to the equivalent element of the stress-energy tensor multiplied by ##8\pi G/c^4## (not divided - @PeterDonis made a typo). You still have a bunch of nasty simultaneous differential equations to solve to extract the metric tensor.
 
Ibix said:
It just means that each element of the Einstein tensor is equal to the equivalent element of the stress-energy tensor multiplied by ##8\pi G/c^4## (not divided - @PeterDonis made a typo).
Oops, yes. I've fixed the post now.
 
Thanks for clarification. Does it mean Einstein equation in this very special case can be reduced to a vector equation, as follows:

G = 8πGT
T
(E,p) = (E,p)×(E,p)/[V (E2 – p2 )½ ]
G(T,X) = (T,X)×(T,X)/[V (T2 – X2 )½ ]

Thus, Einstein equation becomes

(T,X)x(T,X)/[V(T–X2)1/2]
=8πG(E,p)×8πG(E,p)/[V8πG(E2–p2)½]

which can be reduced to a 4-vector equation,

(T,X) =8πG(E,p)

thanks very much
 
In an inertial frame of reference (IFR), there are two fixed points, A and B, which share an entangled state $$ \frac{1}{\sqrt{2}}(|0>_A|1>_B+|1>_A|0>_B) $$ At point A, a measurement is made. The state then collapses to $$ |a>_A|b>_B, \{a,b\}=\{0,1\} $$ We assume that A has the state ##|a>_A## and B has ##|b>_B## simultaneously, i.e., when their synchronized clocks both read time T However, in other inertial frames, due to the relativity of simultaneity, the moment when B has ##|b>_B##...

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 50 ·
2
Replies
50
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 14 ·
Replies
14
Views
2K