B Where is the error in my reasoning about palindromes?

red65
Messages
13
Reaction score
0
1672170106596.png

Hello everyone, I found this problem online about probability, for me, I think that to have a 2 letter palindrome is less likely because we need to have the same letter in the 2 places which gives us 26 possibilities (aa , bb, cc ....) however for words with 3 letters we have 26 possibilities for the first and the last letter times 26 possibilities for the letter in the middle (aaa,aba,aca....) unfortunately my answer is wrong, can anyone tell me where is the mistake in my reasoning?
thanks!
 
Mathematics news on Phys.org
red65 said:
Hello everyone, I found this problem online about probability, for me, I think that to have a 2 letter palindrome is less likely because we need to have the same letter in the 2 places which gives us 26 possibilities (aa , bb, cc ....) however for words with 3 letters we have 26 possibilities for the first and the last letter times 26 possibilities for the letter in the middle (aaa,aba,aca....) unfortunately my answer is wrong, can anyone tell me where is the mistake in my reasoning?
thanks!
Not all possibilities are equally likely. In particular, ##aa## is 26 times more likely than ##aaa##. But ##aa## has the same likelihood as ##a*a##, where ##*## is any letter.
 
  • Like
  • Informative
Likes malawi_glenn and red65
The middle letteer doesn't matter (3 letter word). Drop it and get the same as 2 letter word.
 
  • Like
Likes DaveC426913
red65 said:
can anyone tell me where is the mistake in my reasoning?
For 2 letter words you are right that there are 26 possibilities so we have ## P(\text{palindrome}) = \frac{26}{Y} ##. What is Y? For 3 letter words you are right that the number on the top is 26 x 26, but what is the number on the bottom?
 
  • Like
Likes berkeman and FactChecker
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top