MHB Which one of these two statements is wrong ?

  • Thread starter Thread starter Yankel
  • Start date Start date
Yankel
Messages
390
Reaction score
0
a. every set of n linearly independent vectors are basis of a vector space with dimension n

b. An invertible matrix is necessarily diagonalizable

they both seems wrong to me, but only one suppose to be.

'a' sounds wrong because the n vectors must also span the vector space

and 'b' because I don't see the relation between invertible and diagonalizable
 
Physics news on Phys.org
Yankel said:
'a' sounds wrong because the n vectors must also span the vector space
Which vector space?
 
Yankel said:
a. every set of n linearly independent vectors are basis of a vector space with dimension n

b. An invertible matrix is necessarily diagonalizable

they both seems wrong to me, but only one suppose to be.

'a' sounds wrong because the n vectors must also span the vector space

and 'b' because I don't see the relation between invertible and diagonalizable

n linearly independent vectors span a vector space with n dimensions.
Since the vector space has only n dimensions, those vectors necessarily must span that vector space.

For 'b' you should try to find a counter example.
Can you think of a matrix that is not diagonalizable, but still has a non-zero determinant?
 
to extend serena statement.

If D is a diagnizable matrix then there exists an invertible nxn matrix P
such that D = $P^{-1}AP$ where A is the matrix with the eigen values of D on its diagonals.

Now take D = $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. whose eigen values are 1,1. Now if D is diagnoziable there would exist a nxn invertible matrix P such that

D = $P^{-1}\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}P$, now 4 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is just the identity matrix.
so D = $P^{-1}P = I$, since $D \not = I$, it is clear that D is not diagnizable.

Yet D is invertible Det(D) = 1.
 
Last edited:
thanks everyone for your answers, it's very helpful.

I still don't fully understand why when the dimension is n the vector must also span.

I will try to look for some further material on it

thanks
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top