MHB Whit.a.6.1 Show that the plane H defined by:

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Plane
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{whit.a.6.1}$

Show that the plane H defined by:

$H=\left\{
\alpha_1\left[
\begin{array}{rrr}1\\1\\1\end{array} \right]
+\alpha_2\left[\begin{array}{rrr}1\\-1\\0\end{array} \right]
\textit{ Such that } \alpha_1,\ \alpha_1\in\mathbb{R}\right\}
=\begin{bmatrix}a_1+a_2\\ a_1+a_2\\ a_1\end{bmatrix}$
$\text{rref}(H)=\left[ \begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\0 & 0 & 0 \end{array} \right]$
ok I don't know what this answers
 
Last edited:
Physics news on Phys.org
What question are you trying to answer?

The fact that
$H=\left\{
\alpha_1\left[
\begin{array}{rrr}1\\1\\1\end{array} \right]
+\alpha_2\left[\begin{array}{rrr}1\\-1\\0\end{array} \right]
\textit{ Such that } \alpha_1,\ \alpha_1\in\mathbb{R}\right\}$
IS the same as
$\begin{bmatrix}a_1+a_2\\ a_1+a_2\\ a_1\end{bmatrix}$
should be obvious from the definitions of "scalar multiplication" and "addition of vectors".

Or are you trying to say that something is true about that plane? If so, what?

($\left[ \begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\0 & 0 & 0 \end{array} \right]$ doesn't appear to have anything to do with this problem and "$\text{rref}(H)$" doesn't make sense because "H" is plane, not a matrix.)
 
It's odd that Karush "liked" my response but did not answer the questions I asked.
 
Country Boy said:
What question are you trying to answer?

The fact that
$H=\left\{
\alpha_1\left[
\begin{array}{rrr}1\\1\\1\end{array} \right]
+\alpha_2\left[\begin{array}{rrr}1\\-1\\0\end{array} \right]
\textit{ Such that } \alpha_1,\ \alpha_1\in\mathbb{R}\right\}$
IS the same as
$\begin{bmatrix}a_1+a_2\\ a_1+a_2\\ a_1\end{bmatrix}$
should be obvious from the definitions of "scalar multiplication" and "addition of vectors".

Or are you trying to say that something is true about that plane? If so, what?

($\left[ \begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\0 & 0 & 0 \end{array} \right]$ doesn't appear to have anything to do with this problem and "$\text{rref}(H)$" doesn't make sense because "H" is plane, not a matrix.)
that was shown in an example
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top