MHB Whit.a.6.1 Show that the plane H defined by:

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Plane
Click For Summary
The discussion revolves around the definition of the plane H using vector combinations and clarifies that H can be expressed in terms of scalar multiplication and vector addition. Participants question the relevance of the reduced row echelon form (rref) presented, noting that H is a plane and not a matrix, making the rref notation inappropriate. There is confusion about the original question being posed regarding the properties of the plane H. The conversation emphasizes the need for clarity on what is being asked about the plane H and its mathematical representation. Overall, the discussion highlights the importance of precise definitions and context in mathematical discourse.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{whit.a.6.1}$

Show that the plane H defined by:

$H=\left\{
\alpha_1\left[
\begin{array}{rrr}1\\1\\1\end{array} \right]
+\alpha_2\left[\begin{array}{rrr}1\\-1\\0\end{array} \right]
\textit{ Such that } \alpha_1,\ \alpha_1\in\mathbb{R}\right\}
=\begin{bmatrix}a_1+a_2\\ a_1+a_2\\ a_1\end{bmatrix}$
$\text{rref}(H)=\left[ \begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\0 & 0 & 0 \end{array} \right]$
ok I don't know what this answers
 
Last edited:
Physics news on Phys.org
What question are you trying to answer?

The fact that
$H=\left\{
\alpha_1\left[
\begin{array}{rrr}1\\1\\1\end{array} \right]
+\alpha_2\left[\begin{array}{rrr}1\\-1\\0\end{array} \right]
\textit{ Such that } \alpha_1,\ \alpha_1\in\mathbb{R}\right\}$
IS the same as
$\begin{bmatrix}a_1+a_2\\ a_1+a_2\\ a_1\end{bmatrix}$
should be obvious from the definitions of "scalar multiplication" and "addition of vectors".

Or are you trying to say that something is true about that plane? If so, what?

($\left[ \begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\0 & 0 & 0 \end{array} \right]$ doesn't appear to have anything to do with this problem and "$\text{rref}(H)$" doesn't make sense because "H" is plane, not a matrix.)
 
It's odd that Karush "liked" my response but did not answer the questions I asked.
 
Country Boy said:
What question are you trying to answer?

The fact that
$H=\left\{
\alpha_1\left[
\begin{array}{rrr}1\\1\\1\end{array} \right]
+\alpha_2\left[\begin{array}{rrr}1\\-1\\0\end{array} \right]
\textit{ Such that } \alpha_1,\ \alpha_1\in\mathbb{R}\right\}$
IS the same as
$\begin{bmatrix}a_1+a_2\\ a_1+a_2\\ a_1\end{bmatrix}$
should be obvious from the definitions of "scalar multiplication" and "addition of vectors".

Or are you trying to say that something is true about that plane? If so, what?

($\left[ \begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\0 & 0 & 0 \end{array} \right]$ doesn't appear to have anything to do with this problem and "$\text{rref}(H)$" doesn't make sense because "H" is plane, not a matrix.)
that was shown in an example
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K