MHB Whit.a.6.1 Show that the plane H defined by:

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Plane
Click For Summary
SUMMARY

The discussion centers on the plane H defined by the linear combination of vectors in R3: $H=\left\{\alpha_1\left[\begin{array}{rrr}1\\1\\1\end{array} \right]+\alpha_2\left[\begin{array}{rrr}1\\-1\\0\end{array} \right] \textit{ such that } \alpha_1,\ \alpha_2\in\mathbb{R}\right\}$. Participants clarify that this representation is equivalent to the vector form $\begin{bmatrix}a_1+a_2\\ a_1+a_2\\ a_1\end{bmatrix}$. The mention of the reduced row echelon form (rref) of H, $\text{rref}(H)=\left[ \begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\0 & 0 & 0 \end{array} \right]$, is deemed irrelevant as H is a plane, not a matrix. The discussion emphasizes the importance of understanding scalar multiplication and vector addition in this context.

PREREQUISITES
  • Understanding of vector spaces and linear combinations
  • Familiarity with R3 and its geometric interpretations
  • Knowledge of reduced row echelon form (rref) in linear algebra
  • Concepts of scalar multiplication and vector addition
NEXT STEPS
  • Study the properties of vector spaces in R3
  • Learn about the geometric interpretation of planes defined by linear combinations
  • Explore the application of reduced row echelon form in solving linear systems
  • Investigate the implications of scalar multiplication and vector addition in higher dimensions
USEFUL FOR

Students and educators in linear algebra, mathematicians focusing on vector spaces, and anyone seeking to deepen their understanding of geometric interpretations in R3.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{whit.a.6.1}$

Show that the plane H defined by:

$H=\left\{
\alpha_1\left[
\begin{array}{rrr}1\\1\\1\end{array} \right]
+\alpha_2\left[\begin{array}{rrr}1\\-1\\0\end{array} \right]
\textit{ Such that } \alpha_1,\ \alpha_1\in\mathbb{R}\right\}
=\begin{bmatrix}a_1+a_2\\ a_1+a_2\\ a_1\end{bmatrix}$
$\text{rref}(H)=\left[ \begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\0 & 0 & 0 \end{array} \right]$
ok I don't know what this answers
 
Last edited:
Physics news on Phys.org
What question are you trying to answer?

The fact that
$H=\left\{
\alpha_1\left[
\begin{array}{rrr}1\\1\\1\end{array} \right]
+\alpha_2\left[\begin{array}{rrr}1\\-1\\0\end{array} \right]
\textit{ Such that } \alpha_1,\ \alpha_1\in\mathbb{R}\right\}$
IS the same as
$\begin{bmatrix}a_1+a_2\\ a_1+a_2\\ a_1\end{bmatrix}$
should be obvious from the definitions of "scalar multiplication" and "addition of vectors".

Or are you trying to say that something is true about that plane? If so, what?

($\left[ \begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\0 & 0 & 0 \end{array} \right]$ doesn't appear to have anything to do with this problem and "$\text{rref}(H)$" doesn't make sense because "H" is plane, not a matrix.)
 
It's odd that Karush "liked" my response but did not answer the questions I asked.
 
Country Boy said:
What question are you trying to answer?

The fact that
$H=\left\{
\alpha_1\left[
\begin{array}{rrr}1\\1\\1\end{array} \right]
+\alpha_2\left[\begin{array}{rrr}1\\-1\\0\end{array} \right]
\textit{ Such that } \alpha_1,\ \alpha_1\in\mathbb{R}\right\}$
IS the same as
$\begin{bmatrix}a_1+a_2\\ a_1+a_2\\ a_1\end{bmatrix}$
should be obvious from the definitions of "scalar multiplication" and "addition of vectors".

Or are you trying to say that something is true about that plane? If so, what?

($\left[ \begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\0 & 0 & 0 \end{array} \right]$ doesn't appear to have anything to do with this problem and "$\text{rref}(H)$" doesn't make sense because "H" is plane, not a matrix.)
that was shown in an example
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K