MHB Why Are My Logarithmic Equation Solutions Extraneous?

  • Thread starter Thread starter cbarker1
  • Start date Start date
  • Tags Tags
    Logarithmic
AI Thread Summary
The discussion centers on solving the logarithmic equation $\log(2-x) + \log(3-x) = \log(12)$. The user initially finds the solutions $x=2$ and $x=3$, but both are extraneous due to the logarithm of zero being undefined. The correct factorization of the quadratic equation should yield $x^2 - 5x - 6 = (x+1)(x-6)=0$, leading to valid solutions of $x=-1$ and $x=6$. The confusion arises from an error in the factorization step. The correct solution to the logarithmic equation is $x=-1$.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Solve for x

$\log\left({2-x}\right)+\log\left({3-x}\right)=\log\left({12}\right)$
$\log\left({(2-x)(3-x})\right)=\log\left({12}\right)$
$\left(2-x)\right)\left(3-x)\right)=12$
${x}^{2}-5x-6=0$
$\left(x-2)\right)\left(x-3)\right)=0$
$x=2, x=3$

I have a problem with solutions because both is extraneous.

$\log\left({2-2}\right)+\log\left({3-2}\right)=\log\left({12}\right)$
$\log\left({0}\right)+\log\left({1}\right)=\log\left({12}\right)$
This solution is extraneous as well as the other solution.

The solution in the back of the book is -1.

Where did I made a mistake?Thank you
 
Mathematics news on Phys.org
Cbarker1 said:
Solve for x

$\log\left({2-x}\right)+\log\left({3-x}\right)=\log\left({12}\right)$
$\log\left({(2-x)(3-x})\right)=\log\left({12}\right)$
$\left(2-x)\right)\left(3-x)\right)=12$
${x}^{2}-5x-6=0$
$\color{red}(x-2)(x-3)=0$
$x=2, x=3$

...

Hello,

I've marked the line where you made a tiny (but fatal) mistake.

After facvtorization you should come out with

$$x^2-5x-6 = (x+1)(x-6)=0$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top