Why Are the Roots of xf(x) and xg(x) Distinct in Finite Fields?

Click For Summary

Discussion Overview

The discussion revolves around Proposition 6.5.5 from Beachy and Blair's book on Abstract Algebra, specifically addressing the distinctness of the roots of the polynomials \(xf(x)\) and \(xg(x)\) in the context of finite fields. Participants seek clarification on the proof and the underlying logic regarding the roots of these polynomials.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Some participants express uncertainty about the logic that leads to the conclusion that the roots of \(xf(x)\) and \(xg(x)\) are distinct, particularly in relation to \(g(x)\) being a divisor of \(f(x)\).
  • One participant notes that if \(g(x)\) divides \(f(x)\), then any root \(r\) of \(g\) is also a root of \(f\), suggesting that if the roots of \(f\) are distinct, so too must be the roots of \(g\).
  • Another participant references Lemma 6.5.6 from the book, which states that under certain conditions, the roots of \(f\) are distinct, raising questions about the order of propositions and lemmas in the text.
  • Some participants discuss the implications of finite fields and the distinctness of roots derived from the polynomial \(x^{p^n - 1} - 1\), noting that all elements of the multiplicative group of the field are distinct roots.
  • There is mention of exploring specific cases with small values of \(p\) and \(n\) to illustrate the concepts further.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the exact reasoning behind the distinctness of the roots of \(xf(x)\) and \(xg(x)\). Multiple viewpoints and interpretations of the propositions and lemmas exist, indicating an ongoing debate.

Contextual Notes

The discussion highlights the complexity of the relationships between the roots of polynomials in finite fields and the implications of divisibility among polynomials. Participants note the potential limitations of the propositions and lemmas in the book, particularly regarding their order and the assumptions made.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Beachy and Blair's book: Abstract Algebra (3rd Edition) and am currently studying Proposition 6.5.5.

I need help with the proof of the proposition.

Proposition 6.5.5 and its proof read as follows:View attachment 2848
View attachment 2849In the proof of Proposition 6.5.5 Beachy and Blair write:

" ... ... Since $$F$$ is the splitting field of $$xf(x)$$ over $$K$$ with distinct roots, it must contain all $$p^n$$ distinct roots of $$xg(x)$$ ... "

Although the logic of this statement seems plausible given that $$g(x)$$ is a divisor of $$f(x)$$, I am not sure of the exact logic here ... can someone please give a rigorous explanation of exactly why this follows ...

A second question is this: how do we know that the roots of $$xf(x)$$ and $$xg(x)$$ are distinct?

Any help will be appreciated.

Peter
 
Physics news on Phys.org
Peter said:
I am reading Beachy and Blair's book: Abstract Algebra (3rd Edition) and am currently studying Proposition 6.5.5.

I need help with the proof of the proposition.

Proposition 6.5.5 and its proof read as follows:View attachment 2848
View attachment 2849In the proof of Proposition 6.5.5 Beachy and Blair write:

" ... ... Since $$F$$ is the splitting field of $$xf(x)$$ over $$K$$ with distinct roots, it must contain all $$p^n$$ distinct roots of $$xg(x)$$ ... "

Although the logic of this statement seems plausible given that $$g(x)$$ is a divisor of $$f(x)$$, I am not sure of the exact logic here ... can someone please give a rigorous explanation of exactly why this follows ...

A second question is this: how do we know that the roots of $$xf(x)$$ and $$xg(x)$$ are distinct?

Any help will be appreciated.

Peter

Since $g(x)$ is a divisor of $f(x)$, there is a polynomial $k(x)$ such that $f(x) = g(x)k(x)$. For any root $r$ of $g$, $g(r) = 0$, which implies $f(r) = g(r)k(r) = 0k(r) = 0$. Thus $r$ is a root of $f$. It follows that all the roots of $g$ are roots of $f$. Therefore, if we can show that the roots of $f$ are distinct, then we can claim that the roots of $g$ are distinct. Since 0 is not a root of $f$ (or $g$), this will show that the roots of $xf(x)$ (and hence the roots of $xg(x)$) are distinct.

In Beachy and Blair's book (second edition), Lemma 6.5.6 implies that the roots of $f$ are distinct. The strange thing is, this lemma comes after, not before Proposition 6.5.5. I'll state the lemma here:

Let $F$ be a field of characteristic $p$. If $n$ is a positive integer not divisible by $p$, then the polynomial $x^n - 1$ has no repeated roots in any extension field of $F$.
 
Euge said:
Since $g(x)$ is a divisor of $f(x)$, there is a polynomial $k(x)$ such that $f(x) = g(x)k(x)$. For any root $r$ of $g$, $g(r) = 0$, which implies $f(r) = g(r)k(r) = 0k(r) = 0$. Thus $r$ is a root of $f$. It follows that all the roots of $g$ are roots of $f$. Therefore, if we can show that the roots of $f$ are distinct, then we can claim that the roots of $g$ are distinct. Since 0 is not a root of $f$ (or $g$), this will show that the roots of $xf(x)$ (and hence the roots of $xg(x)$) are distinct.

In Beachy and Blair's book (second edition), Lemma 6.5.6 implies that the roots of $f$ are distinct. The strange thing is, this lemma comes after, not before Proposition 6.5.5. I'll state the lemma here:

Let $F$ be a field of characteristic $p$. If $n$ is a positive integer not divisible by $p$, then the polynomial $x^n - 1$ has no repeated roots in any extension field of $F$.

Thanks Euge ... ... Very much appreciate your help,

Peter
 
For a field $F$, it is a theorem that any polynomial of degree $m$ in $F[x]$ has at MOST $m$ distinct roots. This is easily shown using induction on $m$ and the division algorithm (this is where we require $F$ to be a field, so that $F[x]$ is Euclidean).

If $F$ is a finite field with $|F| = p^n$, then since $F^{\ast}$ is a finite group of order $p^n - 1$, it follows (from Lagrange) that for EVERY $\alpha \in F^{\ast}$:

$\alpha^{|F^{\ast}|} = 1$, that is: $\alpha^{p^n - 1} = 1$.

It follows, then, that every element of $F^{\ast}$ is thus a root of $x^{p^n - 1} - 1$. As we have $p^n - 1$ elements of $F^{\ast}$, and these elements ARE distinct, these must be ALL the roots of $x^{p^n - 1} - 1$, since we could have at most $p^n - 1$ such roots.

Perhaps this is why B&B do not invoke Lemma 6.5.6.

**********************

It is mildly instructive to investigate this for small values of $p$, and $n$. For example, suppose $p = 2, n = 2$. Then $p^n - 1 = 3$, and the roots we are seeking are roots of:

$x^3 - 1$.

Now we trivially have $1$ as a root, and so if $F = \{0,1,u,1+u\}$, so that $F^{\ast} = \{1,u,1+u\}$ it follows that $u,1+u$ must be roots of:

$\dfrac{x^3 - 1}{x - 1} = x^2 + x + 1$.

Note that here we have approached $\Bbb F_4$ from "the other side" than we did when we created $\Bbb F_4$ as:

$\Bbb Z_2(u) = \Bbb Z_2[x]/(x^2 + x + 1)$,

Instead of extending $\Bbb Z_2$ to a field that includes a root of an irreducible polynomial of degree 2 in $\Bbb Z_2[x]$, we started with a field of a given order, and recovered the irreducible polynomial that gives rise to the extension.

You might play around with this, and look at what you can discover with $p = 3$ and $n = 2,3,4$, for example.
 
Deveno said:
For a field $F$, it is a theorem that any polynomial of degree $m$ in $F[x]$ has at MOST $m$ distinct roots. This is easily shown using induction on $m$ and the division algorithm (this is where we require $F$ to be a field, so that $F[x]$ is Euclidean).

If $F$ is a finite field with $|F| = p^n$, then since $F^{\ast}$ is a finite group of order $p^n - 1$, it follows (from Lagrange) that for EVERY $\alpha \in F^{\ast}$:

$\alpha^{|F^{\ast}|} = 1$, that is: $\alpha^{p^n - 1} = 1$.

It follows, then, that every element of $F^{\ast}$ is thus a root of $x^{p^n - 1} - 1$. As we have $p^n - 1$ elements of $F^{\ast}$, and these elements ARE distinct, these must be ALL the roots of $x^{p^n - 1} - 1$, since we could have at most $p^n - 1$ such roots.

Perhaps this is why B&B do not invoke Lemma 6.5.6.

**********************

It is mildly instructive to investigate this for small values of $p$, and $n$. For example, suppose $p = 2, n = 2$. Then $p^n - 1 = 3$, and the roots we are seeking are roots of:

$x^3 - 1$.

Now we trivially have $1$ as a root, and so if $F = \{0,1,u,1+u\}$, so that $F^{\ast} = \{1,u,1+u\}$ it follows that $u,1+u$ must be roots of:

$\dfrac{x^3 - 1}{x - 1} = x^2 + x + 1$.

Note that here we have approached $\Bbb F_4$ from "the other side" than we did when we created $\Bbb F_4$ as:

$\Bbb Z_2(u) = \Bbb Z_2[x]/(x^2 + x + 1)$,

Instead of extending $\Bbb Z_2$ to a field that includes a root of an irreducible polynomial of degree 2 in $\Bbb Z_2[x]$, we started with a field of a given order, and recovered the irreducible polynomial that gives rise to the extension.

You might play around with this, and look at what you can discover with $p = 3$ and $n = 2,3,4$, for example.

Thanks Deveno ... Just working through your post carefully now ...

Peter
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
3K