MHB Why Are the Roots of xf(x) and xg(x) Distinct in Finite Fields?

Click For Summary
The discussion centers on Proposition 6.5.5 from Beachy and Blair's "Abstract Algebra," specifically regarding the distinct roots of the polynomials \(xf(x)\) and \(xg(x)\) in finite fields. It is established that since \(g(x)\) divides \(f(x)\), any root of \(g\) is also a root of \(f\), leading to the conclusion that if the roots of \(f\) are distinct, so are those of \(g\). The proof relies on Lemma 6.5.6, which asserts that polynomials of certain forms have distinct roots in fields of characteristic \(p\). Additionally, the discussion touches on the properties of finite fields, emphasizing that each element is a distinct root of \(x^{p^n - 1} - 1\). Overall, the participants seek clarity on the logical connections between these propositions and the nature of roots in finite fields.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Beachy and Blair's book: Abstract Algebra (3rd Edition) and am currently studying Proposition 6.5.5.

I need help with the proof of the proposition.

Proposition 6.5.5 and its proof read as follows:View attachment 2848
View attachment 2849In the proof of Proposition 6.5.5 Beachy and Blair write:

" ... ... Since $$F$$ is the splitting field of $$xf(x)$$ over $$K$$ with distinct roots, it must contain all $$p^n$$ distinct roots of $$xg(x)$$ ... "

Although the logic of this statement seems plausible given that $$g(x)$$ is a divisor of $$f(x)$$, I am not sure of the exact logic here ... can someone please give a rigorous explanation of exactly why this follows ...

A second question is this: how do we know that the roots of $$xf(x)$$ and $$xg(x)$$ are distinct?

Any help will be appreciated.

Peter
 
Physics news on Phys.org
Peter said:
I am reading Beachy and Blair's book: Abstract Algebra (3rd Edition) and am currently studying Proposition 6.5.5.

I need help with the proof of the proposition.

Proposition 6.5.5 and its proof read as follows:View attachment 2848
View attachment 2849In the proof of Proposition 6.5.5 Beachy and Blair write:

" ... ... Since $$F$$ is the splitting field of $$xf(x)$$ over $$K$$ with distinct roots, it must contain all $$p^n$$ distinct roots of $$xg(x)$$ ... "

Although the logic of this statement seems plausible given that $$g(x)$$ is a divisor of $$f(x)$$, I am not sure of the exact logic here ... can someone please give a rigorous explanation of exactly why this follows ...

A second question is this: how do we know that the roots of $$xf(x)$$ and $$xg(x)$$ are distinct?

Any help will be appreciated.

Peter

Since $g(x)$ is a divisor of $f(x)$, there is a polynomial $k(x)$ such that $f(x) = g(x)k(x)$. For any root $r$ of $g$, $g(r) = 0$, which implies $f(r) = g(r)k(r) = 0k(r) = 0$. Thus $r$ is a root of $f$. It follows that all the roots of $g$ are roots of $f$. Therefore, if we can show that the roots of $f$ are distinct, then we can claim that the roots of $g$ are distinct. Since 0 is not a root of $f$ (or $g$), this will show that the roots of $xf(x)$ (and hence the roots of $xg(x)$) are distinct.

In Beachy and Blair's book (second edition), Lemma 6.5.6 implies that the roots of $f$ are distinct. The strange thing is, this lemma comes after, not before Proposition 6.5.5. I'll state the lemma here:

Let $F$ be a field of characteristic $p$. If $n$ is a positive integer not divisible by $p$, then the polynomial $x^n - 1$ has no repeated roots in any extension field of $F$.
 
Euge said:
Since $g(x)$ is a divisor of $f(x)$, there is a polynomial $k(x)$ such that $f(x) = g(x)k(x)$. For any root $r$ of $g$, $g(r) = 0$, which implies $f(r) = g(r)k(r) = 0k(r) = 0$. Thus $r$ is a root of $f$. It follows that all the roots of $g$ are roots of $f$. Therefore, if we can show that the roots of $f$ are distinct, then we can claim that the roots of $g$ are distinct. Since 0 is not a root of $f$ (or $g$), this will show that the roots of $xf(x)$ (and hence the roots of $xg(x)$) are distinct.

In Beachy and Blair's book (second edition), Lemma 6.5.6 implies that the roots of $f$ are distinct. The strange thing is, this lemma comes after, not before Proposition 6.5.5. I'll state the lemma here:

Let $F$ be a field of characteristic $p$. If $n$ is a positive integer not divisible by $p$, then the polynomial $x^n - 1$ has no repeated roots in any extension field of $F$.

Thanks Euge ... ... Very much appreciate your help,

Peter
 
For a field $F$, it is a theorem that any polynomial of degree $m$ in $F[x]$ has at MOST $m$ distinct roots. This is easily shown using induction on $m$ and the division algorithm (this is where we require $F$ to be a field, so that $F[x]$ is Euclidean).

If $F$ is a finite field with $|F| = p^n$, then since $F^{\ast}$ is a finite group of order $p^n - 1$, it follows (from Lagrange) that for EVERY $\alpha \in F^{\ast}$:

$\alpha^{|F^{\ast}|} = 1$, that is: $\alpha^{p^n - 1} = 1$.

It follows, then, that every element of $F^{\ast}$ is thus a root of $x^{p^n - 1} - 1$. As we have $p^n - 1$ elements of $F^{\ast}$, and these elements ARE distinct, these must be ALL the roots of $x^{p^n - 1} - 1$, since we could have at most $p^n - 1$ such roots.

Perhaps this is why B&B do not invoke Lemma 6.5.6.

**********************

It is mildly instructive to investigate this for small values of $p$, and $n$. For example, suppose $p = 2, n = 2$. Then $p^n - 1 = 3$, and the roots we are seeking are roots of:

$x^3 - 1$.

Now we trivially have $1$ as a root, and so if $F = \{0,1,u,1+u\}$, so that $F^{\ast} = \{1,u,1+u\}$ it follows that $u,1+u$ must be roots of:

$\dfrac{x^3 - 1}{x - 1} = x^2 + x + 1$.

Note that here we have approached $\Bbb F_4$ from "the other side" than we did when we created $\Bbb F_4$ as:

$\Bbb Z_2(u) = \Bbb Z_2[x]/(x^2 + x + 1)$,

Instead of extending $\Bbb Z_2$ to a field that includes a root of an irreducible polynomial of degree 2 in $\Bbb Z_2[x]$, we started with a field of a given order, and recovered the irreducible polynomial that gives rise to the extension.

You might play around with this, and look at what you can discover with $p = 3$ and $n = 2,3,4$, for example.
 
Deveno said:
For a field $F$, it is a theorem that any polynomial of degree $m$ in $F[x]$ has at MOST $m$ distinct roots. This is easily shown using induction on $m$ and the division algorithm (this is where we require $F$ to be a field, so that $F[x]$ is Euclidean).

If $F$ is a finite field with $|F| = p^n$, then since $F^{\ast}$ is a finite group of order $p^n - 1$, it follows (from Lagrange) that for EVERY $\alpha \in F^{\ast}$:

$\alpha^{|F^{\ast}|} = 1$, that is: $\alpha^{p^n - 1} = 1$.

It follows, then, that every element of $F^{\ast}$ is thus a root of $x^{p^n - 1} - 1$. As we have $p^n - 1$ elements of $F^{\ast}$, and these elements ARE distinct, these must be ALL the roots of $x^{p^n - 1} - 1$, since we could have at most $p^n - 1$ such roots.

Perhaps this is why B&B do not invoke Lemma 6.5.6.

**********************

It is mildly instructive to investigate this for small values of $p$, and $n$. For example, suppose $p = 2, n = 2$. Then $p^n - 1 = 3$, and the roots we are seeking are roots of:

$x^3 - 1$.

Now we trivially have $1$ as a root, and so if $F = \{0,1,u,1+u\}$, so that $F^{\ast} = \{1,u,1+u\}$ it follows that $u,1+u$ must be roots of:

$\dfrac{x^3 - 1}{x - 1} = x^2 + x + 1$.

Note that here we have approached $\Bbb F_4$ from "the other side" than we did when we created $\Bbb F_4$ as:

$\Bbb Z_2(u) = \Bbb Z_2[x]/(x^2 + x + 1)$,

Instead of extending $\Bbb Z_2$ to a field that includes a root of an irreducible polynomial of degree 2 in $\Bbb Z_2[x]$, we started with a field of a given order, and recovered the irreducible polynomial that gives rise to the extension.

You might play around with this, and look at what you can discover with $p = 3$ and $n = 2,3,4$, for example.

Thanks Deveno ... Just working through your post carefully now ...

Peter
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K