Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Why are there BCC metals?

  1. Oct 17, 2012 #1
    If FCC and HCP are the ones with the highest atomic packing factor, why would there be metals with BCC structures?
     
  2. jcsd
  3. Oct 17, 2012 #2

    Vanadium 50

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor

    Why does nature want a high packing factor?
     
  4. Oct 17, 2012 #3
    It seems that all the metals that have a bcc structure are transition metals. I list them here, together with their electron configuration, and their magnetic ordering:

    1. 26Fe [Ar] 3d6 4s2, ferromagnetic
    2. 24Cr [Ar] 4s1 3d5, antiferromagnetic (SDW)
    3. 74W [Xe] 4f14 5d4 6s2, paramagnetic
    4. 41Nb [Kr] 4d4 5s1, paramagnetic

    I mention magnetic ordering, because I saw iron among them, and whenever I see iron, I think of ferromagnetism. Also, notice that the magnetic transition temperature (1043 K) is very close to a structural phase transition (fcc -> bcc, bcc existing at lower temperatures) temperature 1185 K.

    I would speculate that the exchange interaction, usually responsible for magnetic ordering, plays a significant role in these metals, and lowers the energy in a bcc structure, than an fcc structure.
     
  5. Oct 17, 2012 #4
    So the reason for the existence of BCC metals has to do with magnetic characteristics? Ok that is definitely a good thing to think about. Unfortunately I don't know much about those. In any case, thanks for showing me this.
     
  6. Oct 17, 2012 #5

    Astronuc

    User Avatar
    Staff Emeritus
    Science Advisor

    Not magnetic characteristics, but probably electron configuration.

    http://en.wikipedia.org/wiki/Periodic_table_(crystal_structure)#Table

    The bcc atoms tend to have higher strength and higher melting temperatures than others in their respective periods.
     
  7. Oct 18, 2012 #6
    Actually the alkali metals (group1) and barium and radium(group2) also have a BCC structure.

    I echo Vanadium's comment and further ask is the packing difference (68 as opposed to 74%) so very large?
     
    Last edited: Oct 18, 2012
  8. Oct 18, 2012 #7

    DrDu

    User Avatar
    Science Advisor

    According to conventional wisdom, BCC crystal structure in these elements is due to directed covalent bonds involving the d-orbitals.
     
  9. Oct 18, 2012 #8
    Ferromagnetism is not a property of the elements. It's a molecular property.

    Even in a metal, the bonds depend on the underlying electronic shells. That's why diamond, silicon and germanium, which have as many valence electrons and the same crystal structure, have different conduction band structure.

    So a reason can be: because the preferred bonds of the element influence the crystal structure. In other words, metallic bonds are not just a matter of packing spheres in a sea of electrons.

    You spoke about pure metals, didn't you? Because in alloys, different atom diameters can favour varied crystals.
     
  10. Oct 19, 2012 #9

    DrDu

    User Avatar
    Science Advisor

    Correct.
    The alkali metals are discussed in many texts on solid state theory like Ashcroft and Mermin.
    You also have to take in mind that in BCC, an atom has 8+6 nearest neighbours while in the closest packed structure only 12.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Why are there BCC metals?
Loading...