Why Are There Contradictions in Hasse Diagram Examples?

  • Thread starter Thread starter arnold28
  • Start date Start date
  • Tags Tags
    Diagram
Click For Summary
The discussion centers on confusion regarding the Hasse diagram for the poset of factors, specifically why certain lines are drawn between elements that seem to have other elements in between. The example provided shows lines connecting 1 to 5 and 2 to 10, raising questions about immediate predecessors. Participants clarify that in a Hasse diagram, a line is drawn if there are no other elements that divide the upper element and are divisible by the lower element. The confusion stems from misunderstanding the definition of immediate predecessors in the context of divisibility. Ultimately, the key takeaway is that the connections in the diagram reflect the direct divisibility relationships without intermediary elements.
arnold28
Messages
14
Reaction score
0
Ok I don't understand one thing...We ahd this example in school

We have poset < {1,2,5,7,10,14,35,70}, | >
| meas factor, for example a|b means b=ka, where k=integer

and we got this Hasse diagram

Code:
        70
       / | \
     10 14 35
     | X  X |
     2   5  7
      \  | /
         1

X means crossed lines

But the hasse diagram definition says that we draw a line between element and the element above it if and only if the lower element is the immediate predecessor of the above one. So why is there a line between 1 and 5? Because there's element 2 in between. Same with 1 and 7, 2 and 10, 7 and 35, etc etc same with almost every element. To me they don't seem to be immediate predecessors/successors with each other

I have google some more examples but they all have the same contradiction between definition and example. So what i don't understand here :(
 
Last edited:
Physics news on Phys.org
arnold28 said:
So why is there a line between 1 and 5? Because there's element 2 in between.
Really? 1 divides 2 and 2 divides 5?
 
i still don't get it :(
for example why is 2 immediate predecessor of 10
 
Last edited:
arnold28 said:
i still don't get it :(
for example why is 2 immediate predecessor of 10
Well, what could come between them? What numbers both divide 10 and are divisible by 2?
 
If there are an infinite number of natural numbers, and an infinite number of fractions in between any two natural numbers, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and... then that must mean that there are not only infinite infinities, but an infinite number of those infinities. and an infinite number of those...

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
14K