I Why are there no probability amplitudes in MWI?

Click For Summary
In the discussion on the absence of probability amplitudes in Many-Worlds Interpretation (MWI), participants clarify that MWI employs the same mathematical framework as all quantum mechanics interpretations, which includes amplitudes. The transformation of wavefunctions during measurement is debated, with emphasis on the necessity of distinguishing states in the equations presented. Errors in the original formulas regarding the interaction states are acknowledged and corrected. The interaction Hamiltonian's role is highlighted, indicating that complex amplitudes can be included and will persist through the unitary process. Overall, the conversation underscores that MWI does utilize probability amplitudes, contrary to initial claims.
entropy1
Messages
1,232
Reaction score
72
If I consider the MWI, one of the notions for what happens during measurement is that the initial wavefunction, if I use Dirac notation and two dimensions, ##|A\rangle+|B\rangle## undergoes the transformation ##(|A\rangle+|B\rangle)|E_{before}\rangle \rightarrow |A\rangle|E_{after}\rangle+|B\rangle|E_{after}\rangle##. So would it then also be correct that we can include the probability amplitudes, to get for instance this?: ##(a|A\rangle+b|B\rangle)|E_{before}\rangle \rightarrow a|A\rangle|E_{after}\rangle+b|B\rangle|E_{after}\rangle##? It seems to me the latter is not correct, because in MWI there are no amplitudes used. Why is that?
 
Physics news on Phys.org
entropy1 said:
in MWI there are no amplitudes used
Yes, they are. MWI uses the same math as all QM interpretations, and that math has amplitudes.
 
  • Like
Likes Paul Colby and entropy1
PeterDonis said:
Yes, they are. MWI uses the same math as all QM interpretations, and that math has amplitudes.
Do my example formulas in #1 agree for the large part with the math you are referring to, or are they far off?
 
entropy1 said:
Do my example formulas in #1 agree for the large part with the math you are referring to
I'm not sure what you are trying to describe with the math in the OP. But the basic math of QM is described in any QM textbook.
 
entropy1 said:
##|A\rangle+|B\rangle## undergoes the transformation ##(|A\rangle+|B\rangle)|E_{before}\rangle \rightarrow |A\rangle|E_{after}\rangle+|B\rangle|E_{after}\rangle##.
Did you intend the two ##|E_{after}\rangle##'s to be different? If they're the same, what you're writing does not represent any interaction at all.
 
Why are there no probability amplitudes in MWI?

I notice that you often start threads with a statement that isn't true. I can't believe this is the most effective way of learning. As Peter said, MWI uses the same math as all QM interpretations.
 
PeterDonis said:
Did you intend the two ##|E_{after}\rangle##'s to be different? If they're the same, what you're writing does not represent any interaction at all.
Yes, sorry, that is an error. It should be _afterA and _afterB, or _measuredA and _measuredB. Is the formula correct if these errors are corrected?

I guess I have to start with that textbook or go study something. Thanks so far. :wink:
 
entropy1 said:
Is the formula correct if these errors are corrected?
If there is an appropriate interaction Hamiltonian between the two systems (the thing whose basis states are ##A## and ##B##, and the thing whose basis states are the ##E## states), yes. And this is true regardless of what complex amplitudes you put in front of the ##A## and ##B## terms: they just get carried through the process since the process is unitary.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
687
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
47
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K