Why can't SR explain why electrons do not crash into the nucleus?

Click For Summary

Discussion Overview

The discussion revolves around the question of why special relativity (SR) cannot explain why electrons do not crash into atomic nuclei. Participants explore classical mechanics, electromagnetic radiation, and the implications of relativistic speeds on electron orbits, with references to quantum mechanics (QM) and gravitational analogies.

Discussion Character

  • Debate/contested
  • Technical explanation
  • Conceptual clarification

Main Points Raised

  • One participant calculates the speed required for an electron to orbit a hydrogen nucleus and argues that relativistic effects prevent it from crashing into the nucleus due to the need for infinite energy to reach certain orbits.
  • Another participant counters that the electron loses kinetic energy through electromagnetic radiation, suggesting that it would eventually spiral into the nucleus according to classical models.
  • A different viewpoint questions the assumption that an electron must maintain centripetal motion while spiraling into the nucleus, suggesting that the dynamics may differ during such a transition.
  • Some participants challenge the assertion that an electron radiates energy while in orbit, proposing that this has not been conclusively proven and drawing parallels to gravitational orbits.
  • Others assert that it is well-established that a charged particle in circular motion radiates energy, referencing experimental evidence from synchrotron radiation and classical electromagnetic theory.
  • One participant proposes that the electron might receive energy replenishment from the fields of the nucleus, suggesting a mechanism that could prevent it from crashing.

Areas of Agreement / Disagreement

Participants express multiple competing views regarding the role of electromagnetic radiation in electron dynamics and the validity of classical versus relativistic models. The discussion remains unresolved, with no consensus on the mechanisms preventing electrons from crashing into nuclei.

Contextual Notes

Some claims rely on classical mechanics and electromagnetic theory, while others invoke quantum mechanics. The discussion highlights uncertainties regarding the assumptions made about energy loss and the behavior of electrons in various conditions.

  • #61
Mr. Mattson -- Mr. Mason, apparently without recognition, has had his question answered in this thread numerous times. Further, the issue of the equivalence principle has absolutely nothing to do with the stability of the hydrogen atom, or any other atom for that matter. It should be dealt with in another thread , which I believe has been the case.

The fact that Mr. Mason could state that relativity has not been applied to the issue of atomic stability for hydrogen suggests to me that he does not know enough to recognize a valid answer to his concerns. Particularly as an ex-professor, I say he does not need answers here, rather he should take the enormous amount of info provided, retire to his study, and study so that he can at least recognize correct answers, or better yet, formulate his own answers. Indeed, as I've said in this thread, he's asked an interesting question. Now let him supply an interesting answer. This is what I would say if I were still partipating in this thread, which I am not.

Regards,
Reilly Atkinson
 
Physics news on Phys.org
  • #62
Andrew Mason said:
I assumed that this non-QM explanation was wrong and that I was missing something obvious somewhere. I have tried to figure out why this is not at least a plausible explanation. I can't.
I seem to recall that Dirac looked at all this when he developed relativistic quantum mechanics. I am afraid you are barking up an old tree that Dirac has already peed on. Worth a look anyway.
 
  • #63
reilly said:
Mr. Mattson -- Mr. Mason, apparently without recognition, has had his question answered in this thread numerous times. Further, the issue of the equivalence principle has absolutely nothing to do with the stability of the hydrogen atom, or any other atom for that matter. It should be dealt with in another thread , which I believe has been the case.

The fact that Mr. Mason could state that relativity has not been applied to the issue of atomic stability for hydrogen suggests to me that he does not know enough to recognize a valid answer to his concerns. Particularly as an ex-professor, I say he does not need answers here, rather he should take the enormous amount of info provided, retire to his study, and study so that he can at least recognize correct answers, or better yet, formulate his own answers. Indeed, as I've said in this thread, he's asked an interesting question. Now let him supply an interesting answer. This is what I would say if I were still partipating in this thread, which I am not.

Regards,
Reilly Atkinson

I'm beginning to concur with Reilly. If one cannot see the distinct difference between an acceleration of an object in a circular motion, with an object AT REST in a gravitational field, even after repeated explanation, then there's nothing else that can be said. The continued bastardization of the equivalence principle here is astounding.

As I've said earlier, if I am not shown where a charged particle in a circular motion doesn't radiate, then this thread is finished... and it is.

Zz.
 
  • #64
Either people are not fully reading/understanding my posts or I am not fully understanding theirs. I keep telling Zz, for example, that I am NOT saying that an electron in gravitational orbit is equivalent to an electron at rest in a gravitational field. Rather that it is equivalent to an electron at rest in an inertial frame of reference. So I don't understand the last post. We don't seem to be joining issue on the problem here, for some reason.

In any event, we seem to be making little progress. So I will graciously take all of your collective advice and retire to my study to reflect on all these weighty matters. Many thanks for putting up with me. :smile:

AM
 
  • #65
I only would like to make a consideration.

We know that charged particles radiates when they accelerates, and I'm totally sure of it.

But when we talk about charged particles in this context, do we mean that they have to be spatially localized?

Since it's not possible to localize an electron in a precise point of its 1s orbit in an atom, maybe it's not possible to say that it accelerates. In a particle accelerator, or even in an high energy atom orbit, it's another story.

The fact the 1s electron could be "spread" around the nucleus, makes me wonder if the electron could be continuously reassorbing the very EM energy it radiates.
 
  • #66
Are you aware of how OLD of a thread you were replying to? I think the last 2 threads you replied to were all "old" threads that were no longer active.

Zz.
 
  • #67
I know how old they are. If this is a problem, you suggest me to begin a new thread?
 
  • #68
No, it's not a problem. Sometime people who reply to these old threads don't seem the realize that the "train has left the station", so to speak.

Zz.
 
  • #69
Thanks.
Have you ever heard about some kind of model of electron in an atom emitting and reabsorbing its own energy?
 
  • #70
lightarrow said:
Thanks.
Have you ever heard about some kind of model of electron in an atom emitting and reabsorbing its own energy?

There are "stochastic electrodynamics" models around in which everything is bathing in some background noise radiation, which compensates exactly (stochastically) the loss due to radiation by acceleration, maintaining some kind of dynamical equilibrium which corresponds in many respects to the quantum-mechanical solution:

* Journal of Scientific Computing Volume 20 , Issue 1 (February 2004)
Pages: 43 - 68

* A stochastic electrodynamics interpretation of spontaneous transitions in the hydrogen atom; H M França et al 1997 Eur. J. Phys. 18 343-349

* Daniel C. Cole & Yi Zou, Quantum Mechanical Ground State of Hydrogen Obtained from Classical Electrodynamics, Physics Letters A, Vol. 317, No. 1-2, pp. 14-20, (2003)

*Daniel C. Cole & Yi Zou, Analysis of Orbital Decay Time for the Classical Hydrogen Atom Interacting with Circularly Polarized Electromagnetic Radiation, Physical Review E, 69, 016601, (2004)

You take these results for what you like them to be. I don't know if these are just fancy coincidences or mean anything more.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 12 ·
Replies
12
Views
3K