Why Do Capacitor Plates Have Equal and Opposite Charges?

AI Thread Summary
Capacitors exhibit equal and opposite charges on their plates, a principle supported by Gauss' law, which states that there is no net charge within a Gaussian surface enclosing a fully charged capacitor. When a capacitor is fully charged, there is no current flowing, indicating that the charge distribution is balanced. In contrast, when a capacitor is not fully charged, current flows, and the charges on the plates are not yet equal. The discussion also clarifies that in a circuit with multiple capacitors in series, the charge on each capacitor remains equal due to the same current flowing through all components. Overall, the conversation emphasizes the relationship between charge, current, and electric fields in capacitors.
  • #101
No sorry, I don't think that the construction of such a closed surface is possible. You got me here though since topology is my weak area and I can't find a good argument to back it up. All I can say is that if such a surface was possible then we would argue that any two charge densities are equal. Take for example a surface charge density ##\sigma_1## that is defined on the xy-plane (z=0) and another ##\sigma_2## on the plane z=5. Using your argument we can conclude that they are always equal.
 
Physics news on Phys.org
  • #102
Take for example a surface charge density σ1 that is defined on the xy-plane (z=0) and another σ2 on the plane z=5. Using your argument we can conclude that they are always equal.
I think that if (1) plates have same geometry and (2) there were no other charges (EDIT:) "nearby" then that seemingly absurd assumption would still be true. Any excess charge ## (\sigma2 vs. sigma3) ## would have to be on the other side of whatever plate had the greater charge magnitude.

But I know I'm going far afield so I'm not at all sure about that. Thanks for presenting me with a reality check!
 
  • #103
I'm going to look at this from a different viewpoint: forget about gaussian surfaces and focus on the charge situation between two identical plates removed a finite distance apart. I will look at the fact that the E field inside both plates is zero and what that implies regarding charge distributions if one plate has greater charge magnitude than the other. Maybe I'll get a better insight into the stuation from that.

In any case I agree that ## \sigma3 = -\sigma2 ## is an approximaton subject to ## d << a ## for two identical square plates of sides ##a## and separation ##d##. I should have stuck to that all along. :confused:
 
  • Like
Likes Delta2
  • #104
OK, I recomputed the charge densities for finite separation distance of plates. The basic assumption is that at distance ##d## there is an attenuation factor ##a## for the force on a unit test charge in either plate. ##a## is a function of ##d## i.e. ## a=a(d) ## but the exact relationship is difficult to determine. So this is more like a qualitative analysis but should be accurate for ## a=1 ## (my old approximations) and ## a=0 ## (plates separated by large distance).

In this view we have, for unit area plates,
## \sigma1 + \sigma2 = Q1 ##
## \sigma3 + \sigma4 = Q2 ##
## \sigma1 - \sigma2 - a\sigma3 - a\sigma4 = 0##
## a\sigma1 + a\sigma2 + \sigma3 - \sigma4 = 0 ##

This solves to
## \sigma1 = \frac {Q1+aQ2} {2} ##
## \sigma2 = \frac {Q1-aQ2} {2} ##
## \sigma3 = \frac {Q2-aQ1} {2} ##
## \sigma4 = \frac {aQ1+Q2} {2} ##

For ## a=1 ## (close-in plates) we get my previous values, wth ##\sigma3 = -\sigma2## etc.

For ## a=0 ## (widely separated plates) we get
## \sigma1 =\frac { Q1} {2} ##
## \sigma2 = \frac {Q1} {2} ##
## \sigma3 = \frac {Q2} {2} ##
## \sigma4 = \frac {Q2} {2} ##
as expected.

Too bad ## a(d) ## is so hard to determine,at least for introductory physics! But it does I think give at least a feel for how charges are rearranged as plate distance varies.

Hope you like this post better than my previous few!
 
  • Like
Likes Delta2
Back
Top