My answer is a bit general but I think its pretty relevant:
Waves and harmonic oscillators are represented by sinusoidal functions. Using Euler's theorem you can rewrite them as the (real part) of an imaginary exponential, where the exponent is i*(arg), where the argument is the same one you would use for an oscillator(wt +phase) or a wave (kx - or +wt + phase).
Its a bit more convenient to work with imaginary exponentials since they're more compact, taking their time derivatives to get velocities for example.
Something worth trying to illustrate that example: show that the total energy (T+V) of a harmonic oscillator is proportional to the square of the amplitude. You can do this either way, but I think its more compact if you use y(t) = Re{Ae^(iwt)} instead of Acoswt as your starting point.