MHB Why Do Functions \(X + UY\) and \(X - UY\) Have Zeroes Only at \(t = \pm 1\)?

  • Thread starter Thread starter mathmari
  • Start date Start date
Click For Summary
The discussion revolves around the proof of a lemma related to the Pell equation in an integral domain of characteristic zero. It establishes that the functions \(X + UY\) and \(X - UY\) have zeroes only at \(t = \pm 1\) based on the relationship \((X - UY)(X + UY) = 1\), which implies that if either function had a pole at those points, the product could not equal one. The parametrization of \(T\) and \(U\) leads to the conclusion that \(X\) and \(Y\) must have zeroes at \(t = \pm 1\) to avoid undefined expressions. The appearance of the constant \(c\) in the equations \(X + UY = c\left(\frac{t+1}{t-1}\right)^m\) and \(X - UY = c(T - U)^m\) arises from the need to express the functions in a form that respects their behavior at the specified zeroes. Overall, the proof hinges on the relationships established by the equations and the behavior of the functions at critical points.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I am reading the proof of the following lemma but I got stuck at some points... Let $R$ be any integral domain of characteristic zero.

We consider the Pell equation $$X^2-(T^2-1)Y^2=1 \tag 1$$ over $R[T]$.

Let $U$ be an element in the algebraic closure of $R[T]$ satisfying $$U^2=T^2-1 \tag 2$$

Define two sequences $X_n, Y_n, n=0, 1, 2, \dots$, of polynomials in $\mathbb{Z}[T]$, by setting $$X_n+UY_n=(T+U)^n\tag 3$$

Lemma.

The solutions of $(1)$ in $R[T]$ are given precisely by $$X=\pm X_n, Y=\pm Y_n, n=0, 1, 2, \dots$$

Proof.

$(1)$ is equivalent too $$(X-UY)(X+UY)=1 \tag 4$$

From $(3)$ and $(2)$ follows $$X_n-UY_n=(T-U)^n=(T+U)^{-n}$$

Hence the $X_n, Y_n$ are solutions of $(1)$.

Conversely, suppose $X$ and $Y$ in $R[T]$ satisfy $(1)$.

Let us parametrise the curve $(2)$ by $$T=\frac{t^2+1}{t^2-1}\ \ ,\ \ U=\frac{2t}{t^2-1}$$

The rational functions $X+UY$ and $X-UY$ in $t$ have poles only at $t=\pm 1$.

Moreover $(4)$ implies they have zeroes only at $t=\pm 1$.

Hence $$X+UY=c\left ( \frac{t+1}{t-1}\right )^m=c(T+U)^m, c \in R, m \in \mathbb{Z}$$

Thus also $X-UY=c(T-U)^m$.

But substistuting this in $(4)$ gives $c^2=1$, which proves the lemma by $(3)$.

Could you explain to me the following part of the proof?
Moreover $(4)$ implies they have zeroes only at $t=\pm 1$.

Hence $$X+UY=c\left ( \frac{t+1}{t-1}\right )^m=c(T+U)^m, c \in R, m\in \mathbb{Z}$$

Thus also $X-UY=c(T-U)^m$.

But substistuting this in $(4)$ gives $c^2=1$, which proves the lemma by $(3)$.

Why do we have from the relation $(4)$ that the functions $X+UY$ and $X-UY$ have zeroes only at $t=\pm 1$ ?

How do we get to the equation $X+UY=c\left ( \frac{t+1}{t-1}\right )^m=c(T+U)^m$ ? How does $c$ appear? 11
 
Physics news on Phys.org
mathmari said:
Why do we have from the relation $(4)$ that the functions $X+UY$ and $X-UY$ have zeroes only at $t=\pm 1$ ?

Ok, so here's $(4)$:
$$(X-UY)(X+UY)=1.$$
Suppose $X-UY$ had a pole at $t=1$. That means it blows up at $t=1$. What's the only way the entire expression $(X-UY)(X+UY)$ could equal $1$ when $t=1$?

What's puzzling me, though, is that it's not entirely obvious to me (moving back a bit in the proof) why, if $T$ and $U$ have poles only at $t=\pm 1$, which is clear, that $(X\pm UY)$ should have poles only at $t=\pm 1$. *thinking out print here* If we examine $X^2-U^2Y^2=1$, and plug in the parametrization, we get
$$X^2-\frac{4t^2}{\left(t^2-1\right)^2} \, Y^2=1.$$
In order for this equation to hold, $Y$ would simply have to have a zero at $t=\pm 1$. Otherwise, we would have an $\infty-\infty$ situation, which is undefined. Because of this fact, it's not clear to me that $X\pm UY$ have poles at all. I'm not sure I buy this proof! It looks to me like the author is hammering $(X-UY)(X+UY)=1$ for all it's worth, but ignoring $X^2-U^2Y^2=1$ and its implications for poles and zeros.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
48
Views
4K
  • · Replies 5 ·
Replies
5
Views
865
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 3 ·
Replies
3
Views
796
  • · Replies 0 ·
Replies
0
Views
283
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
8
Views
2K