JesseM said:
What are examples of spacetimes where a geodesic corresponds to minimal aging as opposed to maximal? Would they come up in any realistic physical situations?
I'm not going to give specific examples for spacetime, but I can give a specific example for space, and I can talk a little about what happens in general.
First, consider the analgous situation in 2-dimensional spaces (not spacetimes). For points p and q in flat R^2, a geodesic (i.e., a straight line) is a local minimum (in terms of length) for curves that run from p to q. For point p and q in curved 2-dimensional spaces (i.e., positive definite Reimannian manifolds), it is not always the case that a geodesic that joins p and q is a local minimum in terms of length.
As an example, consider S^2, the 2-dimensional surface of a 3-dimensional ball, and, for concreteness, take the surface to be the surface of the Earth. Take p to be the north pole and q to be Greenwich England.
The shortest route from the north pole to anywhere is along the appropriate line of longitude, and the shortest route from the north pole to Greewich is south along the 0 line of longitudeprime (prime meridian). This route is a geodesic and a local minimum for length. Call it the short geodesic.
There is, however, another geodesic route that starts at the north pole and ends at Greenwich. From the north pole, go south along the 180 line of longitude to the south pole pole and then north along the 0 line of longitude from the south pole to Greenwich. This route is also a geodesic, but clearly is not a local minimum for length. Call this the long geodesic. Taken together, the short and long geodesics comprise the unique great circle that runs through both the north pole and Greenwich.
How can the diffence between the short geodesic and the long geodesic be characterized? First consider the long geodesic. Any geodesic that starts the north pole, and that is infintesimally close to the long geodesic crosses the long geodesic before it gets to Greenwich, i.e., at the south pole. (Note: these "close" geodesic start at he north pole, but do not go through Greewich). The south pole is what is called a conjugate point.
Now consider the short geodesic. Any geodesic that starts at the north pole, and that is infinitesimally close to the short geodesic does *not* cross the short geodesics between the north pole and greenwich. The short geodesic does not have any conjugate points.
This gives the required characterization: a geodesic between any point p and q of a 2-dimensional space is a local minimum for length if and only if the geodesic has no conjugate points.
Something similar is true for spacetime: a timelike geodesic between events p and q is a local maximum for proper time if and only if there are no conjugate points (to p or q) between p and q. See Wald for a proof. This is very much related to the singularity theorems of Penrose and Hawking, as the focusing nature of gravity (assuming an appropriate energy condition) often causes conjugate points to occur.
Regards,
George