epovo said:
I think it's
$$ a = g ( 1 - v^2/c^2) ^ {3/2} $$
This is true in one dimension, when the acceleration is parallel to the velocity.
If we let ##\alpha## be the magnitude of the proper acceleration, ##\vec{v}## be the coordinate velocity, ##\vec{a}## be the coordinate acceleration, ##\gamma = 1/\sqrt{1-v^2/c^2}## be the gamma factor, and let ##a = ||\vec{a}||##, we can state:
In the parallel case ##\alpha = \gamma^3 \, a##
In the perpend caase ##\alpha = \gamma^2\,a##
In the general case we can write:
$$\alpha^2 = \gamma^4 \, (\vec{a}\cdot \vec{a}) + \frac{\gamma^6}{c^2}\,(\vec{v}\cdot \vec{a})^2$$
see
[link]
I've added a "missing" factor of c^2, the original assumed c=1
In one spatial dimension, ##\vec{a}## and ##\vec{v}## are parallel, so we can write ##\vec{v} = v \, \vec{x}## and ##\vec{a} = a \, \vec{x}## . Thus we have ##\vec{a} \cdot \vec{a} = a^2 (\vec{x} \cdot \vec{x}) = a^2## and ##\vec{v} \cdot \vec{a} = v \, a##, and the above simplifies to
$$\alpha^2 = \frac{a^2}{(1-v^2/c^2)^3}$$
which implies ##\alpha = \gamma^3 \,a##
When ##\vec{a} \cdot \vec{v}=0##, i.e. the acceleration is perpendicular to the velocity, we have instead
$$\alpha^2 = \frac{a^2}{(1-v^2/c^2)^2}$$
which implies ##\alpha = \gamma^2 \, a##