ƒ(x)
- 327
- 0
For part A, (described here: http://www.cramster.com/solution/solution/1157440) I don't understand why they say |x-2| < 1 and why \delta = min{1,ε/5}
In case you can't view the page:
lim x2+2x-5 = 3, x \rightarrow 2
Let ε > 0 and L = 3.
|x2 + 2x -5 -3| < ε
|x2 + 2x - 8| < ε
|x+4||x-2| < ε
If |x-2| < 1, x \rightarrow (1,3) \rightarrow x+2 \in (3,5)
|x-2| < 1 \rightarrow |x+2| < 5
|x-2| < 1 \rightarrow |x2 +2x - 8| = |x-4||x+2| < 5|x-4|
For ε > 0, 5|x-4| < ε \rightarrow |x-4| < \frac{ε}{5}
If \delta = min{1,\frac{ε}{5}}
|x-2| < \delta \rightarrow |x2 + 2x - 8| < 5|x-4| < ε
In case you can't view the page:
lim x2+2x-5 = 3, x \rightarrow 2
Let ε > 0 and L = 3.
|x2 + 2x -5 -3| < ε
|x2 + 2x - 8| < ε
|x+4||x-2| < ε
If |x-2| < 1, x \rightarrow (1,3) \rightarrow x+2 \in (3,5)
|x-2| < 1 \rightarrow |x+2| < 5
|x-2| < 1 \rightarrow |x2 +2x - 8| = |x-4||x+2| < 5|x-4|
For ε > 0, 5|x-4| < ε \rightarrow |x-4| < \frac{ε}{5}
If \delta = min{1,\frac{ε}{5}}
|x-2| < \delta \rightarrow |x2 + 2x - 8| < 5|x-4| < ε
Last edited: