mdeng
- 68
- 1
rbj said:in fact, i knew i mentioned this recently before:
\oint_C \mathbf{B} \cdot \mathrm{d}\mathbf{l} = \mu_0 \iint_S \mathbf{J} \cdot \mathrm{d}\mathbf{S} = \mu_0 \iint_S \rho \mathbf{v} \cdot \mathrm{d}\mathbf{S}
d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{(\mathbf{J}\, dV) \times \mathbf{\hat r}}{r^2} = \frac{\mu_0}{4\pi} \frac{(\rho \mathbf{v}\, dV) \times \mathbf{\hat r}}{r^2}
\mathbf{F} = q \cdot(\mathbf{E} + \mathbf{v} \times \mathbf{B})
what do you think they mean by \mathbf{v}? what did they measure it against?
\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}
\nabla \cdot \mathbf{B} = 0
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}
\nabla \times \mathbf{B} = \frac{1}{c^2} \left( \frac{\partial \mathbf{E}} {\partial t} + \frac{\rho}{\epsilon_0} \mathbf{v} \right)
more mentions of motion.
Is this motion of the EM in "aether", or motion of the observer's frame through aether?