samdiah
- 80
- 0
Why does mass have no effect on stopping distance?
The discussion clarifies that mass does affect stopping distance when considering the forces involved, particularly in scenarios where friction and braking force are significant. It highlights the relationship between mass, normal force, and friction, emphasizing that a larger mass results in a larger normal force, which in turn influences the frictional force required to stop. The conversation also addresses misconceptions regarding the cancellation of mass in equations, confirming that while mass may seem irrelevant in simplified models, it plays a crucial role in real-world applications, such as comparing stopping distances of a car and a truck.
PREREQUISITESPhysics students, automotive engineers, and anyone interested in understanding the dynamics of stopping distances in vehicles.
QuantumCrash said:Well, if you look at N = mg, and if you noticed m in there, the mass actually influences the N, which influences the F, which changes the aceleration...
From F=ma =>larger mass smaller deceleration.
From F=(mu)N => larger mass, larger Normal force, smaller deceleration.
the m's don't cancel out, if that is what you are implying because that would mean the forces that you are comparing are different.
teclo said:the m's do cancel out, though. the equation reads (mu)*m*g = m*a, solving for the acceleration you get a = mu*g. this came up in physics 1 a few years ago and i was super confused.