Why does temperature fall in endothermic process in adiabatic system?

  • Thread starter Thread starter zenterix
  • Start date Start date
  • Tags Tags
    Thermodynamics
Click For Summary
In an endothermic process within an adiabatic system, the system absorbs energy without heat exchange with its surroundings, leading to a decrease in temperature. The energy absorbed comes from the internal energy of the system itself, effectively causing it to "consume" its own energy. This results in a reduction of kinetic energy among the molecules, which is reflected as a drop in temperature. The discussion highlights confusion around the term "surroundings," emphasizing that in this context, it refers to the system's own molecules rather than external sources. The reliability of AI tools like ChatGPT for understanding complex scientific concepts is also questioned.
zenterix
Messages
774
Reaction score
84
TL;DR
I read in a thermodynamics book that "an endothermic process is a process in which energy is acquired from its surroundings as heat" and "when an endothermic process occurs in an adiabatic system, the temperature falls".
In addition, "not all boundaries permit the transfer of energy even though there is a temperature difference between the system and its surroundings. Boundaries that do permit the transfer of energy as heat are called diathermal; those that do not are called adiabatic."

If we have an endothermic process in an adiabatic system, the process is acquiring energy from its surroundings; yet, the adiabatic system has a boundary that does not permit transfer of energy. So how can the temperature fall?

I asked chatgpt and part of the answer was the following:

In an endothermic process, the system absorbs heat energy from its surroundings. However, since the adiabatic container does not allow heat exchange with the surroundings, the heat that is absorbed by the system stays within the system. As a result, the internal energy of the system increases because it has gained energy through the endothermic process.

Now this also doesn't make any sense to me.

The system absorbs heat energy from surroundings, but the adiabatic container does not allow this heat exchange, so the heat that is absorbed (from where???) by the system stays within the system.
 
Chemistry news on Phys.org
Congratulations, you have just learned ChatGPT is not reliable. Simply don't ask it such questions and don't use it as a part of the learning process.

I feel like the problem boils down to lousy use of the word "surroundings".

During the endothermic adiabatic process energy is consumed by the system, but the only source of the energy is the system itself, not its "surroundings" (from which it is isolated). So if the energy is used, it is the internal energy of the system itself, and the temperature of the system goes down, in a way it "eats" itself.

However, assuming the system consist of many molecules, if you look at a single molecule within the system, it absorbs the heat for its own surroundings - that is, from other molecules within the system.
 
  • Like
Likes DrClaude
…or the endothermic process in an adiabatic system converts kinetic energy of the particles (molecules?) into some sort of potential or chemical energy, thus leaving less kinetic energy (motion of particles in system). That is manifested as a lowering of temperature.
 
Borek said:
Congratulations, you have just learned ChatGPT is not reliable. Simply don't ask it such questions and don't use it as a part of the learning process.

I feel like the problem boils down to lousy use of the word "surroundings".

During the endothermic adiabatic process energy is consumed by the system, but the only source of the energy is the system itself, not its "surroundings" (from which it is isolated). So if the energy is used, it is the internal energy of the system itself, and the temperature of the system goes down, in a way it "eats" itself.

However, assuming the system consist of many molecules, if you look at a single molecule within the system, it absorbs the heat for its own surroundings - that is, from other molecules within the system.
Thanks for you answer but your opinion on chatgpt is just that, your opinion. It is unreliable, but this is not by any stretch equivalent to not being useful in various scenarios including the learning process.
 
Thread is paused for a bit while the OP is reminded of the PF rules on AI chatbot use in the technical forums...
 
Last edited by a moderator:
What I know and please correct me: a macroscopic probe of raw sugar you can buy from the store can be modeled to be an almost perfect cube of a size of 0.7 up to 1 mm. Let's assume it was really pure, nothing else but a conglomerate of H12C22O11 molecules stacked one over another in layers with van de Waals (?) "forces" keeping them together in a macroscopic state at a temperature of let's say 20 degrees Celsius. Then I use 100 such tiny pieces to throw them in 20 deg water. I stir the...

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 8 ·
Replies
8
Views
27K
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
22
Views
5K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
10
Views
2K
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K