Why does the amplitude of an undamped driven oscillator not vary with time?

Click For Summary

Discussion Overview

The discussion revolves around the behavior of an undamped driven oscillator, specifically addressing why the amplitude of oscillation does not appear to vary with time when subjected to a driving force. Participants explore the implications of the differential equation governing the system and the conditions under which the driving frequency approaches the natural frequency of the oscillator.

Discussion Character

  • Exploratory, Technical explanation, Debate/contested

Main Points Raised

  • One participant notes that the general solution to the differential equation suggests the amplitude does not vary with time, even as the driving frequency approaches the natural frequency.
  • Another participant points out that initial conditions play a crucial role in determining the starting situation of the oscillator, suggesting that plotting a simple case may provide clarity.
  • A different participant provides a mathematical exploration of the scenario where the driving frequency approaches the natural frequency, detailing the approximations and transformations involved in the equations.
  • There is a suggestion that the superposition of oscillatory components may lead to an initial perception of small amplitude, with the possibility of larger oscillations developing over time as the waves align.
  • One participant questions whether the motion converges onto that of the driven oscillation after the driving force is introduced, seeking a mathematical description of this convergence.
  • Another participant acknowledges the presence of typos in their earlier response, indicating a desire for clarification but not addressing the substantive points raised in the discussion.

Areas of Agreement / Disagreement

Participants express differing views on the implications of the mathematical solutions, particularly regarding the behavior of amplitude over time and the role of initial conditions. The discussion remains unresolved with multiple competing interpretations of the oscillator's behavior.

Contextual Notes

Some mathematical steps and assumptions are not fully resolved, particularly regarding the dependence of initial conditions on the driving frequency and the implications of approaching resonance.

adamjts
Messages
24
Reaction score
0
The equations I'm getting when I solve the differential equations seem to imply that the amplitude of oscillation does not vary in time.

For example, if I have

x'' + ω02x = cos(ωt)

If we suppose that ω≠ω0,

then the general solution should look something like:

x(t) = c1cos(ω0t) + c2sin(ω0t) + (1/(ω22))cos(ωt)

This is okay with me mostly. But then thinking about what happens when ω→ω0 AND ω≠ω0, then obviously the amplitude of the oscillator should be huge. However, It would seem that the amplitude does not depend on time. Which is to say, that the exact moment that we introduce this driving force, the amplitude of the oscillator instantaneously becomes enormous. Which is hard to believe, because I would expect the object to start deviating from its simple oscillations more slowly and grow in time.

I know that when ω=ω0 that there is a factor of t in the amplitude, but that is not the case here.

Is it because the superposition of the two sinusoids makes it seem like the initial amplitudes are small. So when the driving force is introduced, the waves align such that the oscillating body does not seem to have a huge amplitude. But over some time, the waves will align such that the body does have evidently huge oscillations. This would imply, though, that the oscillations would become small again. In other words, we would expect long beats. Is this correct?

Or, maybe it's more likely that after the driver begins, the motion converges onto that of the driven oscillation? Why and how would one describe so mathematically?
 
Physics news on Phys.org
adamjts said:
Which is to say, that the exact moment that we introduce this driving force, the amplitude of the oscillator instantaneously becomes enormous
You do have initial conditions to determine c1 and c2 that determine the starting situation. Try to plot a simple case to see how it looks.
Without damping the ##\omega_0## oscillation goes on forever, indeed.
 
In order to understand what happen when ##\omega## tends to ##\omega_0## , let ##\omega=\omega_0+\epsilon##
##\omega^2-\omega_0^2=(\omega+\omega_0)\epsilon \simeq 2\omega_0\epsilon##
##\sin(\omega t)=\sin(\omega_0 t+\epsilon t)=\sin(\omega_0 t)\cos(\epsilon t)+\cos(\omega_0 t)\sin(\epsilon t) \simeq \sin(\omega_0 t)+\cos(\omega_0 t)\epsilon t##
##\cos(\omega t)=\cos(\omega_0 t+\epsilon t)=\cos(\omega_0 t)\cos(\epsilon t)-\sin(\omega_0 t)\sin(\epsilon t) \simeq \cos(\omega_0 t)+\sin(\omega_0 t)\epsilon t ##
The solution : ##x(t)=c_1 \cos(\omega t)+c_2\sin(\omega t)+\frac{1}{\omega^2-\omega_0^2}\cos(\omega t)## becomes :
##x(t) \simeq c_1 \cos(\omega_0 t)+c_2\sin(\omega_0 t)+c_2\cos(\omega_0 t) \epsilon t+\frac{1}{2\omega_0\epsilon}\left(\cos(\omega_0 t)+\sin(\omega_0 t)\epsilon t\right)##
##x(t) \simeq \left(c_1+\frac{1}{2\omega_0\epsilon} \right)\cos(\omega_0 t)+c_2\sin(\omega_0 t)+\frac{t}{2\omega_0}\sin(\omega_0 t)+c_2\cos(\omega_0 t)\epsilon t##
At ##t=0## the starting value is ##x(0)=x_0=\left(c_1+\frac{1}{2\omega_0\epsilon} \right)##
In fact, ##c_1## depends on ##\epsilon## so that the initial condition be fulfilled. : ##c_1=x_0-\frac{1}{2\omega_0\epsilon}##
##x(t) \simeq x_0\cos(\omega_0 t)+c_2\sin(\omega_0 t)+\frac{t}{2\omega_0}\sin(\omega_0 t)+c_2\epsilon t \cos(\omega_0 t)##
If ##\epsilon=0## the solution is : ##x(t) = x_0\cos(\omega_0 t)+c_2\sin(\omega_0 t)+\frac{t}{2\omega_0}\sin(\omega_0 t)##
which is exacly the solution of the equation ##x''+\omega_0^2 x=\cos(\omega_0 t)##
 
  • Like
Likes   Reactions: adamjts
There are several typo in my first answer; I suppose that you can correct them.
 
  • Like
Likes   Reactions: adamjts

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
17
Views
3K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
7K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 17 ·
Replies
17
Views
6K