Why does the given conserved quantity mean the motion is on a cone?

deuteron
Messages
64
Reaction score
14
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: .

An electrone moves in a magnetic field ##B(\vec r)=g \frac {\vec r}{|\vec r|^3}##. Why does the conservation of the quantity $$\vec J=\vec r \times\vec p +eg\frac {\vec r}{|\vec r|}$$ mean that the motion is on the surface of a cone?
 
Physics news on Phys.org
Is this homework?
 
You multiplying ##\vec{J}## with ##\vec{r}## gives
$$\vec{r} \cdot \vec{J}=e g r.$$
Now use spherical coordinates with ##\vec{J}/J## as the polar axis. Then the equation implies
$$J x_3 =e g r \; \Rightarrow \; \cos \vartheta=\frac{x_3}{r}=\frac{e g}{J}=\text{const},$$
which is the (implicit equation of a cone).

In the spherical coordinates you thus have
$$\vec{r}=\begin{pmatrix} r \sin \vartheta \cos \varphi \\ r \sin \vartheta \sin \varphi \\ e g r/J \end{pmatrix},$$
which describes a cone since ##\vartheta=\text{const}##.
 
  • Like
Likes PhDeezNutz, TSny and deuteron
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top