Why does the given conserved quantity mean the motion is on a cone?

deuteron
Messages
64
Reaction score
14
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: .

An electrone moves in a magnetic field ##B(\vec r)=g \frac {\vec r}{|\vec r|^3}##. Why does the conservation of the quantity $$\vec J=\vec r \times\vec p +eg\frac {\vec r}{|\vec r|}$$ mean that the motion is on the surface of a cone?
 
Physics news on Phys.org
Is this homework?
 
You multiplying ##\vec{J}## with ##\vec{r}## gives
$$\vec{r} \cdot \vec{J}=e g r.$$
Now use spherical coordinates with ##\vec{J}/J## as the polar axis. Then the equation implies
$$J x_3 =e g r \; \Rightarrow \; \cos \vartheta=\frac{x_3}{r}=\frac{e g}{J}=\text{const},$$
which is the (implicit equation of a cone).

In the spherical coordinates you thus have
$$\vec{r}=\begin{pmatrix} r \sin \vartheta \cos \varphi \\ r \sin \vartheta \sin \varphi \\ e g r/J \end{pmatrix},$$
which describes a cone since ##\vartheta=\text{const}##.
 
  • Like
Likes PhDeezNutz, TSny and deuteron
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top