Why does the given conserved quantity mean the motion is on a cone?

AI Thread Summary
The conservation of the quantity $$\vec J=\vec r \times\vec p +eg\frac {\vec r}{|\vec r|}$$ indicates that the motion of an electron in a magnetic field is constrained to a conical surface. The relationship $$\vec{r} \cdot \vec{J}=e g r$$ leads to the conclusion that $$\cos \vartheta=\frac{e g}{J}$$ remains constant, defining the angle of the cone. By using spherical coordinates, the position vector $$\vec{r}$$ can be expressed in terms of a fixed angle $$\vartheta$$, confirming that the trajectory is conical. Thus, the conservation law directly correlates to the geometric constraint of motion on a cone.
deuteron
Messages
64
Reaction score
14
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: .

An electrone moves in a magnetic field ##B(\vec r)=g \frac {\vec r}{|\vec r|^3}##. Why does the conservation of the quantity $$\vec J=\vec r \times\vec p +eg\frac {\vec r}{|\vec r|}$$ mean that the motion is on the surface of a cone?
 
Physics news on Phys.org
Is this homework?
 
You multiplying ##\vec{J}## with ##\vec{r}## gives
$$\vec{r} \cdot \vec{J}=e g r.$$
Now use spherical coordinates with ##\vec{J}/J## as the polar axis. Then the equation implies
$$J x_3 =e g r \; \Rightarrow \; \cos \vartheta=\frac{x_3}{r}=\frac{e g}{J}=\text{const},$$
which is the (implicit equation of a cone).

In the spherical coordinates you thus have
$$\vec{r}=\begin{pmatrix} r \sin \vartheta \cos \varphi \\ r \sin \vartheta \sin \varphi \\ e g r/J \end{pmatrix},$$
which describes a cone since ##\vartheta=\text{const}##.
 
  • Like
Likes PhDeezNutz, TSny and deuteron
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top