Why Does the Set (0,2) Have No Maximum?

  • Thread starter Thread starter member 731016
  • Start date Start date
  • Tags Tags
    Maximum Set
Click For Summary
The set (0,2) has no maximum because it does not include the endpoint 2. Any proposed maximum value can always be surpassed by another number that is still less than 2, demonstrating that there is no largest element. This leads to the conclusion that for any number in the set, a larger number can be found that remains within the bounds of (0,2). The contradiction arises when assuming a maximum exists, as it can always be exceeded. Therefore, the set (0,2) is unbounded above and lacks a maximum.
member 731016
Homework Statement
I am trying to find the maximum of the set of real numbers in the open interval ##(0,2) ##
Relevant Equations
##(0,2)##
For this,
1700712007090.png

I am trying to understand why the set ##(0,2)## has no maximum. Is it because if we say for example claim that ##a_0 = 1.9999999999## is the max of the set, then we could come along and say that ##a_0 = 1.9999999999999999999999999999## is the max, can we continue doing that a infinite number of times so long that ##a_0 < 2##.

Many thanks!
 
Physics news on Phys.org
ChiralSuperfields said:
I am trying to understand why the set ##(0,2)## has no maximum. Is it because if we say for example claim that ##a_0 = 1.9999999999## is the max of the set, then we could come along and say that ##a_0 = 1.9999999999999999999999999999## is the max, can we continue doing that a infinite number of times so long that ##a_0 < 2##.
Yes. Within (0,2), you can get as close as you want to 2, but 2 itself is not in the set (0,2). The definition specifies that the maximum must be in the set. So (0,2) has no maximum point.
 
  • Like
Likes member 731016
I didn't understand your sentence after "max,".

Assume that ##(0,2)## has a maximum ##m<2.## Then ##m<m+\dfrac{2-m}{2}=\dfrac{2+m}{2}<2## which cannot be since ##m## was already the maximum. This is a contradiction, so there is no maximal number.

If you prefer the positive reasoning, then given any number ##m_0\in (0,2)## then ##m_1=\dfrac{2+m_0}{2}## is a number greater than ##m_0## and still smaller than ##2.## Now, we can proceed with that new number and define ##m_2= \dfrac{2+m_1}{2}.## This results in an infinite sequence
$$
0<m_0<m_1<m_2<\ldots < 2
$$
that gets closer and closer to ##2## but never ends. If this was what you wanted to say, then the answer is 'yes'.
 
  • Like
Likes member 731016

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K