tom, et al.---
Expect a longer response to your questions in the near future, but let me make a point quickly that most people don't acknowledge.
The MSSM has a landscape problem.
Let me clarify: when I say ``landscape problem'', I'm not referring to cc problems (which no body can solve). I mean a much more mundane issue, involving scalar VEVs. I claim that any theory in which couplings and masses are set dynamically will exhibit a landscape of solutions, if not at tree level, then certainly when one considers higher dimensional operators. Let me explain.
One of the ways to understand the landscape problem in string theory is to note that string theory is a very good way to get SUSY QCD theories, which have a consistent UV completion. But any SUSY QCD theory with chiral multiplets (i.e., fermions that aren't gauginos) has a landscape problem: the reason is because one can always write down a set of supersymmetric solutions to any theory, called F=0 and D=0 constraints. In a broad class of theories, when F=0 and D=0 solutions exist, they're not unique. Thus there are a continuum of possibilities that comes just from the presence of supersymmetry.
Now, let's assume that the supersymmetry isn't broken in our universe. What does the landscape look like? Well, we have all these scalars in our theory, called sfermions (squarks and sleptons) which obey some F=0 and D=0 constraints. These F=0 and D=0 constraints
can be satisfied at points where the squarks get VEVs. This means that SU(3) is broken, which is ruled out by observation (to say the least).
Thus we live in a very particular vacuum of nature: that is, all scalar VEVs, with exception of the higgs, are zero. The fact that other vacua exist where the SM gauge group is broken is a fact that follows from field theory, and NOT string theory.
You can extend this argument to any theory with scalars. This is a particle physics statement, and has nothing to do with quantum gravity.
To emphasize this point, consider the Higgs. The higgs mass is the only dimensionful parameter in the SM, and it sets the scale for electroweak symmetry breaking, and all of the fermion masses. The higgs potential in the SM is ad hoc, and has no known origin. In fact, if we write down some higher dimensional operators, as would arise from some Wilsonian effective theory, it's not hard to imagine that we might find other minima for the higgs. So in the full theory (some GUT, say, or---at worst---some non-stringy QG model) the higgs potential can have many minima. So it's even possible that the SM has a landscape problem.
The point is, the string theory landscape is nothing new, and was even realized a long time ago. The only reason it's a problem now is that some people are jealous that their pet theories are being ignored by serious scientists. You know---it's always easier to sh1t on someone else's work than to convince people that your ideas are worth listening to, or even come up with your own ideas in the first place. And make no mistake---QG researchers are actively involved in the former, and Columbia University professors who don't have their own research program actively engage in the latter.
It is true that string theory was overhyped. But this is the tendency of the media to sensationalize results. Remember the hoopla involved with Garrett Lisi's E8 paper a few years ago? Discover Magazine had a list of ``10 Successors to Einstein'', and this paper landed Lisi on that list. Good for him, but you can ask him yourself if he believes he should be there. Where were all the stories pointing out the objections of the scientific community of his work? Did you see any rebuttals? I didn't. Journalists, by and large, are idiots. (If you need proof of this, read
this article, published in a ``serious'' pop science mag.) They want headlines, and physicists want money. So it's an easy tradeoff to make---we get publicity, and they get a story. Anyway this is sociology and not physics, so it's not really worth talking about.
Let me say that I hope (as much as anyone) that a unique solution exists. But I also understand why the solutions may not be unique---I have spent my (short, and rapidly winding down) career as a string phenomenologist, and I can see the types of problems people tend to have in ALL string constructions.
Let me finally reiterate and old argument: Citing the landscape as a problem may just come from the fact that people are expecting too much from string theory. Who are WE to expect that Nature is unique? Does this bother you? At some point, people tried to derive why we have 8 planets around the sun, or why Earth was some particular distance from the sun. But there are trillions of suns and Earth's, so is it worth while to try and understand why THIS earth-sun system happens to be the right age, and have the right separation for liquid water and a comfortable temperature? If you are a creationist, then you might marvel at this fact and spend time thinking about it---that is, if you believe that there's some
reason for it all, then you will waste time on this problem. But if you understand that anthropics is the reason that humans live on earth, you ask different questions altogether.