- #1

- 383

- 5

I see now why R is multiplied in now, but why inst L multiplied in in the analogous pendulum equation?

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- I
- Thread starter Superposed_Cat
- Start date

- #1

- 383

- 5

I see now why R is multiplied in now, but why inst L multiplied in in the analogous pendulum equation?

- #2

- 17,472

- 8,467

$$\vec{x}=\begin{pmatrix}

r \cos(\omega t) \\ r \sin (\omega t) \\ 0

\end{pmatrix}.$$

The time derivative gives the velocity

$$\dot{\vec{x}}=\vec{v}=\begin{pmatrix}

-r \omega \sin(\omega t) \\ r \omega \cos(\omega t)

\end{pmatrix}.$$

The magnitude thus is

$$|\vec{v}|=r \omega.$$

- #3

- 926

- 485

- #4

- 17,472

- 8,467

Ok, to be very precise, the angular velocity in my example is ##\vec{\omega}=\omega \vec{e}_z##.

- #5

- 383

- 5

Thanks all, :)

Share: