Why Is Capacitance Considered Constant in a Conductor?

Click For Summary
SUMMARY

The capacitance (C) of a conductor is defined as the constant ratio between charge (Q) and potential (V), expressed by the equation Q = CV. This relationship remains constant as long as the physical dimensions and material properties of the conductor do not change. The potential (V) is directly proportional to the total charge (Q) on the conductor, not the incremental charge (ΔQ) added. Consequently, while the relationship between charge and potential is linear, the work required to add additional charge increases with the existing charge on the conductor.

PREREQUISITES
  • Understanding of capacitance and its formula C = Q/V
  • Familiarity with the concepts of charge (Q) and potential (V)
  • Knowledge of electrical properties of materials
  • Basic principles of charging and discharging capacitors
NEXT STEPS
  • Explore the physical properties affecting capacitance in different materials
  • Study the behavior of capacitors under constant current and constant voltage conditions
  • Learn about the mathematical derivation of capacitance and its implications in circuit design
  • Investigate the relationship between work done (W) and charge (Q) in electrical systems
USEFUL FOR

Electrical engineers, physics students, and anyone interested in understanding the principles of capacitance and its applications in electronic circuits.

Higgsono
Messages
93
Reaction score
4
The capacitance C of a conductor is given to be a constant relationship between charge Q and potential V of the conductor given by Q = CV.
But how can C be a constant? Because the potential of the conductor will not be a linear relationship of the charge that I add. THe more charge there is on the conductor already, the more work is needed to add additional charge. Hence the potential I add by bringing new charges to the conductor must depend on the charge already there.

What is it that I don't understand?
 
Physics news on Phys.org
Higgsono said:
Because the potential of the conductor will not be a linear relationship of the charge that I add.
The potential is linear with the charge that is on the conductor, not the charge that is added. I.e. ##V## is proportional to ##Q## not ##\Delta Q##
 
Dale said:
The potential is linear with the charge that is on the conductor, not the charge that is added. I.e. ##V## is proportional to ##Q## not ##\Delta Q##

huh? Q and V are not constants. I must be able to double the charge and the relation should be the same right?
 
Higgsono said:
huh? Q and V are not constants. I must be able to double the charge and the relation should be the same right?
Yes, the proportionality between ##Q## and ##V## is constant, but what you are describing in your text is the relationship between ##\Delta Q## and ##\Delta W##. ##\Delta Q\ne Q## and ##\Delta W \ne V##
 
Remember that C is a physical quantity. Remember back to the simple capacitance days and how two plates make a capacitor. The capacitance depends on dimensions and material properties. It does not depend on electrical properties. It is a constant as long as the materials and the physical dimensions don't change.

As for the charge and voltage, capacitance is the ratio of the two, C=Q/V; therefore Q and V don't have to be linear, they can follow any line as long as the ratio between them remains constant.

If you want to look at the different lines that Q and V follow, look at charging and discharging a capacitor at constant current versus constant voltage/resistance.
 
Let’s try it more quantitatively
Higgsono said:
Because the potential of the conductor will not be a linear relationship of the charge that I add.
That is correct. ##V \propto Q## not ##V \propto dQ##

Higgsono said:
THe more charge there is on the conductor already, the more work is needed to add additional charge.
Yes, ##dW/dQ=f(Q)## where ##df/dQ>0##

Specifically
##dW/dt=P=IV=V \; dQ/dt##
##dW/dQ = V = Q/C =f(Q)##
So ##df/dQ =1/C>0##

Higgsono said:
Hence the potential I add by bringing new charges to the conductor must depend on the charge already there.
No, it does not follow. Instead ##dV/dQ = 1/C##
 
Thread 'Colors in a plasma globe'
I have a common plasma globe with blue streamers and orange pads at both ends. The orange light is emitted by neon and the blue light is presumably emitted by argon and xenon. Why are the streamers blue while the pads at both ends are orange? A plasma globe's electric field is strong near the central electrode, decreasing with distance, so I would not expect the orange color at both ends.

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K