Why is sine not used for dot product?

Click For Summary
SUMMARY

The discussion clarifies why cosine is used for the dot product while sine is reserved for the cross product in vector mathematics. The dot product, defined as A·B = |A||B|cos(angle_between_A_and_B), measures the projection of one vector onto another, utilizing cosine due to its geometric properties on the unit circle. In contrast, sine is associated with the perpendicular component of vectors, relevant in cross product calculations. The simplicity of cosine as the starting point of the unit circle is emphasized as a key reason for its application in dot products.

PREREQUISITES
  • Understanding of vector mathematics
  • Familiarity with trigonometric functions, specifically sine and cosine
  • Knowledge of dot product and cross product definitions
  • Basic concepts of unit circles and projections
NEXT STEPS
  • Study the geometric interpretation of the dot product and its applications in physics
  • Explore the properties of the unit circle and its significance in trigonometry
  • Learn about the coordinate-free definition of the dot product
  • Investigate the relationship between sine, cosine, and vector projections in higher dimensions
USEFUL FOR

Mathematicians, physics students, and anyone interested in understanding vector operations and their geometric interpretations in trigonometry.

Kirkkh
Messages
1
Reaction score
0
TL;DR
Re-examine an old question on here from 2012 “Why sine is used for cross product and cosine for dot product?
There’s a old 2012 post on here “Why sine is used for cross product and cosine for dot product?” —there are a lot of great answers (which is how I came about this forum). After reading over the replies, it occurred to me: really it’s just because cosine is the “start” of a unit circle.

Which is to say we set up a “dot product” to be a single number, it’s a simple idea —how do two similar vectors relate? Given that —we use the simplest metric (cosine). If we used sine (again, not being at the bringing of the circle) it would add additional information that would need to be subtracted.

So I guess a better question would of been: why is cosine the beginning of the unit circle? (which I’m sure there’s many good reasons for).
 
Physics news on Phys.org
It is because the dot product is the projection of one vector onto another. If you draw a diagram and calculate the projected length of the shorter onto the longer vector, it goes as cosine of the angle by elementary trigonometry. Invoking a unit circle would restrict dot products to unit vectors.
 
  • Like
Likes   Reactions: WWGD
I look at it in a vector sense. I have a two vectors A and B and I want to know what is the projection of A on B and what portion of A is NOT projected on B ie is perpendicular to B.

The projection can be found by the dot product A.B = |A||B|cos(angle_between_A_and_B).

This comes from thinking of A as the hypotenuse of a right triangle and B as a side and |B|/|A|= cos(angle_between_A_and_B) . Notice |A|sin(angle_between_A_and_B) is the other side of the triangle.

Hence, for the projection of A on B we get |A|cos(angle_between_A_and_B)

Next for the portion of A that is NOT projected onto B ie that is perpendicular to B.

We use the cross product and sin(angle_between_A_and_B) and for symmetry we define the result as a vector perpendicular to both A and B:

whose length is: |AxB| = |A||B|sin(angle_between_A_and_B)
 
Kirkkh said:
“Why sine is used for cross product and cosine for dot product?” —there are a lot of great answers (which is how I came about this forum). After reading over the replies, it occurred to me: really it’s just because cosine is the “start” of a unit circle.
??
Why do you think that cosine is the "start" of the unit circle?
The "start" of the unit circle would be the point (1, 0) for an angle of 0 (radians). At this point ##\cos(0) = 1## and ##\sin(0) = 0##. So both trig functions are involved, as they are at all points of the unit circle.
Kirkkh said:
Given that —we use the simplest metric (cosine). If we used sine (again, not being at the bringing of the circle) it would add additional information that would need to be subtracted.
Why do you think that cosine is the simpler metric?
In relation to two vectors with components among the reals, there are two definitions for the dot product: a coordinate definition, and a coordinate-free definition.
The coordinate definition is ##u \cdot v = u_1v_1 + u_2v_2 + \dots + u_nv_n##.
The coordinate-free definition is ##u \cdot v = |u||v|\cos(\theta)##, where ##\theta## is the angle between the two vectors.
 
  • Like
Likes   Reactions: jedishrfu

Similar threads

  • · Replies 33 ·
2
Replies
33
Views
4K
  • · Replies 7 ·
Replies
7
Views
59K
  • · Replies 32 ·
2
Replies
32
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K