1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Why is the cross product perpendicular?

  1. Feb 19, 2013 #1
    Why is the cross product of two vectors perpendicular to the plane the two vectors lie on?

    I am aware that you can prove this by showing that:

    [itex](\vec{a}\times\vec{b})\cdot\vec{a} = (\vec{a}\times\vec{b})\cdot\vec{b} = 0[/itex]

    Surely it was not defined as this and worked backwards though. I see little advantage in making this definition, and simply guessing it seems a bit random, so what brings it about?
  2. jcsd
  3. Feb 19, 2013 #2
    What is your definition of the cross product?
  4. Feb 20, 2013 #3
    By the matrix definition of the cross product we have
    [itex] \vec{a}\times \vec{b} \cdot \vec{c}
    = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_i & a_j & a_k \\ b_i & b_j & b_k \end{vmatrix} \cdot \vec{c}
    = (\vec{i} \begin{vmatrix} a_j & a_k \\ b_j & b_k \end{vmatrix} -\vec{j} \begin{vmatrix} a_i & a_k \\ b_i & b_k \end{vmatrix} + \vec{k} \begin{vmatrix} a_i & a_j \\ b_i & b_j \end{vmatrix} ) \cdot \vec{c} \\
    = (c_i \begin{vmatrix} a_j & a_k \\ b_j & b_k \end{vmatrix} -c_j \begin{vmatrix} a_i & a_k \\ b_i & b_k \end{vmatrix} + c_k \begin{vmatrix} a_i & a_j \\ b_i & b_j \end{vmatrix} )
    = \begin{vmatrix} c_i & c_j & c_k \\ a_i & a_j & a_k \\ b_i & b_j & b_k \end{vmatrix} [/itex].

    When [itex] \vec{c} = \vec{a} [/itex] or [itex] \vec{c} = \vec{b} [/itex] the determinant has two equal rows and becomes zero. This means the dot product is zero and the vectors are perpendicular.
  5. Feb 21, 2013 #4


    User Avatar
    Homework Helper

    The cross product is the (up to multiplication by a constant) only product possible that takes two vectors to a third. It is also extremely useful to produce a vector perpendicular to two given vectors. All the time you have two vectors and need one perpendicular to them. Bam! Cross product done.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook