Why is the Poisson kernel important in harmonic functions?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
SUMMARY

The Poisson kernel is essential in deriving Poisson's integral formula for harmonic functions within the unit disk. Specifically, for a harmonic function \( u \) continuous on its closure, the formula is expressed as \( u(z_0)=\frac{1}{2\pi}\int_0^{2\pi}\frac{1-|z_0|^2}{|e^{i\theta}-z_0|^2}u(e^{i\theta})\,d\theta \) for \( |z_0|<1 \). The transformation \( T(z)=\frac{z-z_0}{1-\overline{z_0}z} \) is utilized to show that \( u_0(z)=u(T(z)) \) remains harmonic, leading to the conclusion that \( \frac{1-|z_0|^2}{|e^{i\theta}-z_0|^2}=P_r(\theta-\varphi) \), where \( P_r \) denotes the Poisson kernel.

PREREQUISITES
  • Understanding of harmonic functions and their properties
  • Familiarity with the mean value theorem in the context of complex analysis
  • Knowledge of complex transformations, specifically the Möbius transformation
  • Basic proficiency in calculus, particularly integration techniques
NEXT STEPS
  • Study the derivation and applications of Poisson's integral formula in harmonic analysis
  • Explore the properties and applications of the Poisson kernel in potential theory
  • Learn about the mean value property of harmonic functions and its implications
  • Investigate Möbius transformations and their role in complex analysis
USEFUL FOR

Mathematicians, particularly those specializing in complex analysis and harmonic functions, as well as students seeking to deepen their understanding of Poisson's integral formula and its applications in theoretical contexts.

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here's this week's problem.

-----

Problem: Let $u$ be a harmonic function in the unit disk that is continuous on its closure. Deduce Poisson's integral formula
\[u(z_0)=\frac{1}{2\pi}\int_0^{2\pi}\frac{1-|z_0|^2}{|e^{i\theta}-z_0|^2}u(e^{i\theta})\,d\theta\quad\text{for }|z_0|<1\]
from the special case $z_0=0$ (the mean value theorem). Show that if $z_0=re^{i\varphi}$, then
\[\frac{1-|z_0|^2}{|e^{i\theta}-z_0|^2}=\frac{1-r^2}{1-2r\cos(\theta-\varphi)+r^2}=P_r(\theta-\varphi)\]
(which is know as the Poisson kernel.)

-----

Hint: [sp]Set $u_0(z)=u(T(z))$ where
\[T(z)=\frac{z-z_0}{1-\overline{z_0}z}.\]
Prove that $u_0$ is harmonic. Then apply the mean value theorem to $u_0$, and make a change of variables in the integral.[/sp]

 
Physics news on Phys.org
No one answered this week's question. You can find my solution below.

[sp]If $u(z)$ is harmonic in the closed disc $|z|\leq 1$, then\[z=S(T(z))=\frac{T(z)+z_0}{1+\overline{z_0}T(z)}\]
maps $|T(z)|\leq 1$ onto $|z|\leq 1$ with $T(z)=0$ corresponding to $z=z_0$. Thus, $u(S(T(z)))$ is harmonic in $|T(z)|\leq 1$ and by the mean value property we have
\[u(z_0) = \frac{1}{2\pi}\int_{|T(z)|= 1}u(S(T(z)))\,d\arg\,T(z)\] where $\theta=\arg T(z)$. Now,
\[z=\frac{T(z)+z_0}{1+\overline{z_0}T(z)}\implies T(z)=\frac{z-z_0}{1-\overline{z_0}z}.\]
It follows that
\[\begin{aligned}\,d\arg\,T(z) &= -i\frac{d T(z)}{T(z)}\\ &= -i\frac{(1-\overline{z_0}z)+\overline{z_0}(z-z_0)}{(1-\overline{z_0}z)^2}\cdot\frac{1-\overline{z_0}z}{z-z_0}\,dz\\ &=-i\left(\frac{1}{z-z_0}+\frac{\overline{z_0}}{1-\overline{z_0}z}\right)\,dz\\ &= \left(\frac{z}{z-z_0}+\frac{\overline{z_0}z}{1-\overline{z_0}z}\right)\cdot\left(-i\frac{\,dz}{z}\right)\\ &= \left(\frac{z}{z-z_0}+\frac{\overline{z_0}z}{1-\overline{z_0}z}\right)\,d\theta.\end{aligned}\]
If $z\overline{z}=1$, then
\[\begin{aligned}\frac{z}{z-z_0}+\frac{\overline{z_0}z}{1-\overline{z_0}z} &= \frac{z}{z-z_0}+\frac{\overline{z_0}z}{z\overline{z}-\overline{z_0}z}\\ &=\frac{z}{z-z_0}+\frac{\overline{z_0}}{\overline{z}-\overline{z_0}}\\ &= \frac{z(\overline{z}-\overline{z_0})+\overline{z_0}(z-z_0)}{|z-z_0|^2}\\ &= \frac{1-|z_0|^2}{|z-z_0|^2}\end{aligned}\]
Therefore,
\[\begin{aligned}u(z_0) &= \frac{1}{2\pi}\int_{|T(z)|=1}u(S(T(z)))\,d\arg T(z)\\ &= \frac{1}{2\pi}\int_{|T(z)|=1}\left(\frac{z}{z-z_0}+\frac{\overline{z_0}z}{1-\overline{z_0}z}\right)u(z)\,d\theta\\ &= \frac{1}{2\pi}\int_{|T(z)|=1}\frac{1-|z_0|^2}{|z-z_0|^2}u(z)\,d\theta.\end{aligned}\]
Letting $z=e^{i\theta}$, we get Poisson's integration formula
\[u(z_0)=\frac{1}{2\pi}\int_0^{2\pi}\frac{1-|z_0|^2}{|e^{i\theta}-z_0|^2}u(e^{i\theta})\,d\theta.\]
If $z_0=re^{i\varphi}$, then it follows that
\[\begin{aligned}\frac{1-|z_0|^2}{|e^{i\theta}-z_0|^2} &= \frac{1-r^2|e^{i\varphi}|^2}{|e^{i\theta}-e^{i\varphi}|^2}\\ &=\frac{1-r^2}{|(\cos\theta-r\cos\varphi)-i(\sin\theta-r\sin\varphi)|^2}\\ &= \frac{1-r^2}{(\cos\theta-r\cos\varphi)^2+(\sin\theta-r\sin\varphi)^2}\\ &= \frac{1-r^2}{(\cos^2\theta+\sin^2\theta)-2r(\sin\theta\sin\varphi+\cos\theta\cos\varphi)+r^2(\sin^2\varphi+\cos^2\varphi)}\\ &=\frac{1-r^2}{r^2-2r\cos(\theta-\varphi)+1}\\ &= P_r(\theta-\varphi). \hspace{.5in}\blacksquare\end{aligned}\][/sp]
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
3K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K