MHB Why is the Poisson kernel important in harmonic functions?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The discussion focuses on deriving Poisson's integral formula for harmonic functions within the unit disk. It begins with the mean value property for harmonic functions and establishes that if a function is harmonic in the closed disk, it can be expressed using a specific integral involving the Poisson kernel. The transformation \(T(z)\) is introduced to facilitate the proof, leading to the conclusion that the Poisson kernel can be represented as \(P_r(\theta - \varphi)\). The derivation confirms the significance of the Poisson kernel in expressing harmonic functions in terms of boundary values. Understanding this relationship is crucial for applications in potential theory and complex analysis.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here's this week's problem.

-----

Problem: Let $u$ be a harmonic function in the unit disk that is continuous on its closure. Deduce Poisson's integral formula
\[u(z_0)=\frac{1}{2\pi}\int_0^{2\pi}\frac{1-|z_0|^2}{|e^{i\theta}-z_0|^2}u(e^{i\theta})\,d\theta\quad\text{for }|z_0|<1\]
from the special case $z_0=0$ (the mean value theorem). Show that if $z_0=re^{i\varphi}$, then
\[\frac{1-|z_0|^2}{|e^{i\theta}-z_0|^2}=\frac{1-r^2}{1-2r\cos(\theta-\varphi)+r^2}=P_r(\theta-\varphi)\]
(which is know as the Poisson kernel.)

-----

Hint: [sp]Set $u_0(z)=u(T(z))$ where
\[T(z)=\frac{z-z_0}{1-\overline{z_0}z}.\]
Prove that $u_0$ is harmonic. Then apply the mean value theorem to $u_0$, and make a change of variables in the integral.[/sp]

 
Physics news on Phys.org
No one answered this week's question. You can find my solution below.

[sp]If $u(z)$ is harmonic in the closed disc $|z|\leq 1$, then\[z=S(T(z))=\frac{T(z)+z_0}{1+\overline{z_0}T(z)}\]
maps $|T(z)|\leq 1$ onto $|z|\leq 1$ with $T(z)=0$ corresponding to $z=z_0$. Thus, $u(S(T(z)))$ is harmonic in $|T(z)|\leq 1$ and by the mean value property we have
\[u(z_0) = \frac{1}{2\pi}\int_{|T(z)|= 1}u(S(T(z)))\,d\arg\,T(z)\] where $\theta=\arg T(z)$. Now,
\[z=\frac{T(z)+z_0}{1+\overline{z_0}T(z)}\implies T(z)=\frac{z-z_0}{1-\overline{z_0}z}.\]
It follows that
\[\begin{aligned}\,d\arg\,T(z) &= -i\frac{d T(z)}{T(z)}\\ &= -i\frac{(1-\overline{z_0}z)+\overline{z_0}(z-z_0)}{(1-\overline{z_0}z)^2}\cdot\frac{1-\overline{z_0}z}{z-z_0}\,dz\\ &=-i\left(\frac{1}{z-z_0}+\frac{\overline{z_0}}{1-\overline{z_0}z}\right)\,dz\\ &= \left(\frac{z}{z-z_0}+\frac{\overline{z_0}z}{1-\overline{z_0}z}\right)\cdot\left(-i\frac{\,dz}{z}\right)\\ &= \left(\frac{z}{z-z_0}+\frac{\overline{z_0}z}{1-\overline{z_0}z}\right)\,d\theta.\end{aligned}\]
If $z\overline{z}=1$, then
\[\begin{aligned}\frac{z}{z-z_0}+\frac{\overline{z_0}z}{1-\overline{z_0}z} &= \frac{z}{z-z_0}+\frac{\overline{z_0}z}{z\overline{z}-\overline{z_0}z}\\ &=\frac{z}{z-z_0}+\frac{\overline{z_0}}{\overline{z}-\overline{z_0}}\\ &= \frac{z(\overline{z}-\overline{z_0})+\overline{z_0}(z-z_0)}{|z-z_0|^2}\\ &= \frac{1-|z_0|^2}{|z-z_0|^2}\end{aligned}\]
Therefore,
\[\begin{aligned}u(z_0) &= \frac{1}{2\pi}\int_{|T(z)|=1}u(S(T(z)))\,d\arg T(z)\\ &= \frac{1}{2\pi}\int_{|T(z)|=1}\left(\frac{z}{z-z_0}+\frac{\overline{z_0}z}{1-\overline{z_0}z}\right)u(z)\,d\theta\\ &= \frac{1}{2\pi}\int_{|T(z)|=1}\frac{1-|z_0|^2}{|z-z_0|^2}u(z)\,d\theta.\end{aligned}\]
Letting $z=e^{i\theta}$, we get Poisson's integration formula
\[u(z_0)=\frac{1}{2\pi}\int_0^{2\pi}\frac{1-|z_0|^2}{|e^{i\theta}-z_0|^2}u(e^{i\theta})\,d\theta.\]
If $z_0=re^{i\varphi}$, then it follows that
\[\begin{aligned}\frac{1-|z_0|^2}{|e^{i\theta}-z_0|^2} &= \frac{1-r^2|e^{i\varphi}|^2}{|e^{i\theta}-e^{i\varphi}|^2}\\ &=\frac{1-r^2}{|(\cos\theta-r\cos\varphi)-i(\sin\theta-r\sin\varphi)|^2}\\ &= \frac{1-r^2}{(\cos\theta-r\cos\varphi)^2+(\sin\theta-r\sin\varphi)^2}\\ &= \frac{1-r^2}{(\cos^2\theta+\sin^2\theta)-2r(\sin\theta\sin\varphi+\cos\theta\cos\varphi)+r^2(\sin^2\varphi+\cos^2\varphi)}\\ &=\frac{1-r^2}{r^2-2r\cos(\theta-\varphi)+1}\\ &= P_r(\theta-\varphi). \hspace{.5in}\blacksquare\end{aligned}\][/sp]
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K