Graduate Why is vector made different here

  • Thread starter Thread starter LSMOG
  • Start date Start date
  • Tags Tags
    Vector
Click For Summary
The discussion clarifies the use of indices in vector notation, emphasizing that repeated indices denote summation. It explains that while indices can be named arbitrarily, using the same index for different sums can lead to confusion and errors. To avoid mistakes, it's crucial to rename one of the summation indices when dealing with multiple sums. The example provided illustrates the potential pitfalls of using identical indices, particularly in the context of vector dot products. Proper index management is essential for accurate calculations in vector mathematics.
LSMOG
Messages
62
Reaction score
0
|r|2=r.r=uiei.ujej
Why are i and j different because we are dotting the same vector?
 
Physics news on Phys.org
The repeated indices denote a sum. Thus ##\vec u = u^i \vec e_i##. Since the ##i## here is a summation index, it does not matter what you call it. You can call it ##i##, ##j##, ##k##, or ##\xi## to your heart's delight without changing the meaning. What you cannot do is to take two sums where you have used the same index and treat their multiplication as a single sum. Instead, you must rename one of the summation indices and keep both sums. For example, consider your case, writing out the sums
$$
\vec u \cdot \vec u = (u^1 \vec e_1 + u^2 \vec e_2 + u^3\vec e_3) \cdot (u^1 \vec e_1 + u^2 \vec e_2 + u^3\vec e_3) = (u^i \vec e_i) \cdot (u^j \vec e_j).
$$
Consider what this would have been if you had used the same index and still summed over it
$$
u^1 \vec e_1 \cdot u^1 \vec e_1 + u^2 \vec e_2 \cdot u^2 \vec e_2 + u^2 \vec e_2 \cdot u^2 \vec e_2.
$$
You might say that you can tell the sums apart anyway but my experience after teaching relativity for several years is that you really cannot and that you really need to separate the sums using different indices. One of the more common errors students do is to use the same summation index for different sums and then they forget which belonged where and happily (until they get their test score back) sum the wrong terms together.
 
  • Like
Likes fresh_42
Thanks sir
 
In an inertial frame of reference (IFR), there are two fixed points, A and B, which share an entangled state $$ \frac{1}{\sqrt{2}}(|0>_A|1>_B+|1>_A|0>_B) $$ At point A, a measurement is made. The state then collapses to $$ |a>_A|b>_B, \{a,b\}=\{0,1\} $$ We assume that A has the state ##|a>_A## and B has ##|b>_B## simultaneously, i.e., when their synchronized clocks both read time T However, in other inertial frames, due to the relativity of simultaneity, the moment when B has ##|b>_B##...

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 22 ·
Replies
22
Views
997
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
752
  • · Replies 2 ·
Replies
2
Views
815