MHB Why Must One Leg of a Primitive Pythagorean Triple Be a Multiple of 3?

  • Thread starter Thread starter alexmahone
  • Start date Start date
  • Tags Tags
    Primitive
AI Thread Summary
In a primitive Pythagorean triple (a, b, c), it is established that exactly one of a or b must be a multiple of 3, while c cannot be a multiple of 3. The reasoning involves modular arithmetic, showing that if both a and b are congruent to ±1 modulo 3, then c^2 would equal 2 modulo 3, which is impossible since the only quadratic residues modulo 3 are 0 and 1. Conversely, if one of a or b is 0 modulo 3 and the other is ±1 modulo 3, then c^2 equals 1 modulo 3, which aligns with the properties of perfect squares. The discussion emphasizes the necessity of these conditions for the validity of primitive Pythagorean triples.
alexmahone
Messages
303
Reaction score
0
Prove that for any primitive Pythagorean triple (a, b, c), exactly one of a and b must be a multiple of 3, and c cannot be a multiple of 3.

My attempt:

Let a and b be relatively prime positive integers.

If $a\equiv \pm1 \pmod{3}$ and $b\equiv \pm1 \pmod{3}$,

$c^2=a^2+b^2\equiv 1+1\equiv 2 \pmod{3}$

This is impossible as the only quadratic residues modulo 3 are 0 and 1.

So far, so good.

If one of a, b is $\equiv 0 \pmod{3}$ and the other is $\equiv \pm1 \pmod{3}$,

$c^2=a^2+b^2\equiv 0+1\equiv 1 \pmod{3}$

This is the part I don't understand. Just because $c^2\equiv 1\pmod{3}$ doesn't mean that $c^2$ must be a perfect square. For example, $a=12$ and $b=13$ satisfy the above conditions but $c^2=a^2+b^2=313$, which isn't a perfect square.
 
Last edited:
Mathematics news on Phys.org
Alexmahone said:
Prove that for any primitive Pythagorean triple (a, b, c), exactly one of a and b must be a multiple of 3, and c cannot be a multiple of 3.

My attempt:

Let a and b be relatively prime positive integers.

If $a\equiv \pm1 \pmod{3}$ and $b\equiv \pm1 \pmod{3}$,

$c^2=a^2+b^2\equiv 1+1\equiv 2 \pmod{3}$

This is impossible as the only quadratic residues modulo 3 are 0 and 1.

So far, so good.

If one of a, b is $\equiv 0 \pmod{3}$ and the other is $\equiv \pm1 \pmod{3}$,

$c^2=a^2+b^2\equiv 0+1\equiv 1 \pmod{3}$

This is the part I don't understand. Just because $c^2\equiv 1\pmod{3}$ doesn't mean that $c^2$ must be a perfect square. For example, $a=12$ and $b=13$ satisfy the above conditions but $c^2=a^2+b^2=313$, which isn't a perfect square.

you have established that
If one of a, b is $\equiv 0 \pmod{3}$ and the other is $\equiv \pm1 \pmod{3}$,

$c^2=a^2+b^2\equiv 0+1\equiv 1 \pmod{3}$
you are right that $c^2 = 1 \pmod{3}$ does not mean that $c^2$ is perfect square but in the above you have shown that for a Pythagorean triplet above condition must be true. it is one way and not both ways
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top