MHB Why Must One Leg of a Primitive Pythagorean Triple Be a Multiple of 3?

  • Thread starter Thread starter alexmahone
  • Start date Start date
  • Tags Tags
    Primitive
alexmahone
Messages
303
Reaction score
0
Prove that for any primitive Pythagorean triple (a, b, c), exactly one of a and b must be a multiple of 3, and c cannot be a multiple of 3.

My attempt:

Let a and b be relatively prime positive integers.

If $a\equiv \pm1 \pmod{3}$ and $b\equiv \pm1 \pmod{3}$,

$c^2=a^2+b^2\equiv 1+1\equiv 2 \pmod{3}$

This is impossible as the only quadratic residues modulo 3 are 0 and 1.

So far, so good.

If one of a, b is $\equiv 0 \pmod{3}$ and the other is $\equiv \pm1 \pmod{3}$,

$c^2=a^2+b^2\equiv 0+1\equiv 1 \pmod{3}$

This is the part I don't understand. Just because $c^2\equiv 1\pmod{3}$ doesn't mean that $c^2$ must be a perfect square. For example, $a=12$ and $b=13$ satisfy the above conditions but $c^2=a^2+b^2=313$, which isn't a perfect square.
 
Last edited:
Mathematics news on Phys.org
Alexmahone said:
Prove that for any primitive Pythagorean triple (a, b, c), exactly one of a and b must be a multiple of 3, and c cannot be a multiple of 3.

My attempt:

Let a and b be relatively prime positive integers.

If $a\equiv \pm1 \pmod{3}$ and $b\equiv \pm1 \pmod{3}$,

$c^2=a^2+b^2\equiv 1+1\equiv 2 \pmod{3}$

This is impossible as the only quadratic residues modulo 3 are 0 and 1.

So far, so good.

If one of a, b is $\equiv 0 \pmod{3}$ and the other is $\equiv \pm1 \pmod{3}$,

$c^2=a^2+b^2\equiv 0+1\equiv 1 \pmod{3}$

This is the part I don't understand. Just because $c^2\equiv 1\pmod{3}$ doesn't mean that $c^2$ must be a perfect square. For example, $a=12$ and $b=13$ satisfy the above conditions but $c^2=a^2+b^2=313$, which isn't a perfect square.

you have established that
If one of a, b is $\equiv 0 \pmod{3}$ and the other is $\equiv \pm1 \pmod{3}$,

$c^2=a^2+b^2\equiv 0+1\equiv 1 \pmod{3}$
you are right that $c^2 = 1 \pmod{3}$ does not mean that $c^2$ is perfect square but in the above you have shown that for a Pythagorean triplet above condition must be true. it is one way and not both ways
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top