MHB Why Must One Leg of a Primitive Pythagorean Triple Be a Multiple of 3?

  • Thread starter Thread starter alexmahone
  • Start date Start date
  • Tags Tags
    Primitive
AI Thread Summary
In a primitive Pythagorean triple (a, b, c), it is established that exactly one of a or b must be a multiple of 3, while c cannot be a multiple of 3. The reasoning involves modular arithmetic, showing that if both a and b are congruent to ±1 modulo 3, then c^2 would equal 2 modulo 3, which is impossible since the only quadratic residues modulo 3 are 0 and 1. Conversely, if one of a or b is 0 modulo 3 and the other is ±1 modulo 3, then c^2 equals 1 modulo 3, which aligns with the properties of perfect squares. The discussion emphasizes the necessity of these conditions for the validity of primitive Pythagorean triples.
alexmahone
Messages
303
Reaction score
0
Prove that for any primitive Pythagorean triple (a, b, c), exactly one of a and b must be a multiple of 3, and c cannot be a multiple of 3.

My attempt:

Let a and b be relatively prime positive integers.

If $a\equiv \pm1 \pmod{3}$ and $b\equiv \pm1 \pmod{3}$,

$c^2=a^2+b^2\equiv 1+1\equiv 2 \pmod{3}$

This is impossible as the only quadratic residues modulo 3 are 0 and 1.

So far, so good.

If one of a, b is $\equiv 0 \pmod{3}$ and the other is $\equiv \pm1 \pmod{3}$,

$c^2=a^2+b^2\equiv 0+1\equiv 1 \pmod{3}$

This is the part I don't understand. Just because $c^2\equiv 1\pmod{3}$ doesn't mean that $c^2$ must be a perfect square. For example, $a=12$ and $b=13$ satisfy the above conditions but $c^2=a^2+b^2=313$, which isn't a perfect square.
 
Last edited:
Mathematics news on Phys.org
Alexmahone said:
Prove that for any primitive Pythagorean triple (a, b, c), exactly one of a and b must be a multiple of 3, and c cannot be a multiple of 3.

My attempt:

Let a and b be relatively prime positive integers.

If $a\equiv \pm1 \pmod{3}$ and $b\equiv \pm1 \pmod{3}$,

$c^2=a^2+b^2\equiv 1+1\equiv 2 \pmod{3}$

This is impossible as the only quadratic residues modulo 3 are 0 and 1.

So far, so good.

If one of a, b is $\equiv 0 \pmod{3}$ and the other is $\equiv \pm1 \pmod{3}$,

$c^2=a^2+b^2\equiv 0+1\equiv 1 \pmod{3}$

This is the part I don't understand. Just because $c^2\equiv 1\pmod{3}$ doesn't mean that $c^2$ must be a perfect square. For example, $a=12$ and $b=13$ satisfy the above conditions but $c^2=a^2+b^2=313$, which isn't a perfect square.

you have established that
If one of a, b is $\equiv 0 \pmod{3}$ and the other is $\equiv \pm1 \pmod{3}$,

$c^2=a^2+b^2\equiv 0+1\equiv 1 \pmod{3}$
you are right that $c^2 = 1 \pmod{3}$ does not mean that $c^2$ is perfect square but in the above you have shown that for a Pythagorean triplet above condition must be true. it is one way and not both ways
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top