Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Why no higher derivative in physics?

  1. Jun 27, 2017 #1
    Dear all,

    I'm asking why there is no higher derivative than two in physics ? I never encountered a third (time or space) derivative in physics.

    Have you some litterature about this?

    Thank you.

    Regards.
     
  2. jcsd
  3. Jun 27, 2017 #2

    Bandersnatch

    User Avatar
    Science Advisor
    Gold Member

    Google for jerk, jounce, crackle and pop.
     
  4. Jun 27, 2017 #3
    Thank you for your reply. I knew these quantities but I'm speaking about equations.

    Why EDP are always in term of second derivatives ? (diffusive - convective - wave equations)

    Even in General Relativity, Riemann curvative tensor is "the derivative" of the Christoffel symbols which is "the derivative" of the metric tensor => order 2 in term of spatial derivative.
     
  5. Jun 27, 2017 #4

    A.T.

    User Avatar
    Science Advisor
    Gold Member

    You can use these quantities in equations too.
     
  6. Jun 27, 2017 #5

    sophiecentaur

    User Avatar
    Science Advisor
    Gold Member

    You are asking the forbidden "why" question, for which there is never a proper answer. All we can say is that 'we find that' the vast majority of phenomena can be characterised in equations requiring just a second derivative. Variables such as Jerk etc. are part of Science but not needed for most purposes so you don't come across them too often.
     
  7. Jun 27, 2017 #6

    fresh_42

    Staff: Mentor

    The fun part is, that either the first and second derivative is considered (sometimes third, as in curve sketching) or it is required to have infinitely often differentiable functions. So implicitly the other derivatives are often used, as smooth functions play a big role in physics.
     
  8. Jul 2, 2017 #7
    Third and higher derivatives of position are used in things like camshafts. In order for the valve to have the maximum area under the valve changes in acceleration have to be carefully managed. As an example when the cam goes past the maximum valve opening the acceleration changes sign.

    Cheers
     
  9. Jul 2, 2017 #8

    olivermsun

    User Avatar
    Science Advisor

    Look for "wave equation in stiff string," "Korteweg-de Vries (KdV) equation," and similar.
     
    Last edited: Jul 3, 2017
  10. Jul 3, 2017 #9

    hilbert2

    User Avatar
    Science Advisor
    Gold Member

    There are equations in the theory of elastic bending of plates where there's a double Laplacian operator ##(\nabla^2 )^2## acting on an unknown function - a fourth order PDE. Another example is the equation of motion of thin liquid films for low-Reynolds number flow.
     
  11. Jul 3, 2017 #10
    The question is nevertheless reasonable. Derivatives beyond 2 are really rare in physics. I think ultimately the reason for this is Locality. The physics at (x,t) is determined mostly by events at (x+dx, t-dt). The further away stuff is, the weaker the interaction. But higher derivatives ultimately describe the behaviour of a function relatively far away from the current point.
     
  12. Jul 3, 2017 #11

    fresh_42

    Staff: Mentor

    This is not true. Differentiability is always a local property, no matter how often it is possible. "Relatively far away" is definitely a misinformation.
     
  13. Jul 3, 2017 #12
    I don't recall seeing snap (jounce), crackle, and pop in servo drive manuals and parameter lists, but jerk is available on all modern servos, and (although often called "s-curve") in many induction motor VFDs, too. Jerk increases overall motion profile move time, but is worth the trade-off in applications where high positioning accuracy is required, and also helps prevent machinery from tearing itself apart where high inertia loads are involved.
     
  14. Jul 3, 2017 #13

    DrDu

    User Avatar
    Science Advisor

    There are plenty of situations, where higher derivatives appear. But maybe the scope of the question can be reduced to why there are usually no higher derivatives than the first in the Lagrangian? This will turn up quite a lot of results on Google.
     
  15. Jul 3, 2017 #14

    sophiecentaur

    User Avatar
    Science Advisor
    Gold Member

    Every car journey exhibits a third order time derivative as your accelerator pedal takes time from one setting to another.
     
    Last edited: Jul 3, 2017
  16. Jul 3, 2017 #15
    Yes, in math. But have you done numerical differention, perhaps even for solving partial differential equations? For higher derivatives at x0, you need to evaluate the function at points further away from x0. And ultimately, the infinitesimally small doesn't really exist in physics.
     
  17. Jul 3, 2017 #16

    fresh_42

    Staff: Mentor

    You are implicitly suggesting that there are two different concepts of differentiability in physics and in mathematics. This is also wrong! To cover one misinformation by the next one is nonsense.

    You can have a perfect smooth function at a point which is completely wild and not even continuous "further away". To say you need points farther apart is a contradiction to the concept of a local phenomena and very misleading. E.g. in a often used Taylor expansion in physics, all derivatives are evaluated at the same point. It should not be told that "other points are needed", because it is simply wrong. And you do not need "infinitesimal small" or "dx". One only needs a small neighborhood of a point to have an approach, which normally does exist even in physics. This is already needed for the first derivative.
     
  18. Jul 3, 2017 #17

    hilbert2

    User Avatar
    Science Advisor
    Gold Member

    I have made simulations of the thin-film flow system that is described by a 4th order PDE, and the high order doesn't cause any significant trouble in the implicit finite differencing - the shape of the liquid surface approaches a paraboloid of revolution as it sets into static equilibrium (just as it physically should do to minimize surface energy).
     
  19. Jul 3, 2017 #18
    Yes, and if you want to have the second derivative, you'll have to use a larger neighborhood than what you took for the first derivative. Higher orders even more so. And as long as the taylor series converges, the derivatives will yield more information about the larger neighborhood of the point.

    Let's say you're solving Navier-Stokes or pressure waves. Obviously, the derivatives are not "real derivatives" in a mathematical sense. Length scales below the size of an atom are unreasonable, then the equation doesn't apply anymore. The derivatives only occur in those equations because atoms are in fact pretty small.
     
  20. Jul 3, 2017 #19
    First off, as previously mentioned, there are third and higher derivatives in physics. However, you are completely correct that they are rare-- jerk is occasionally used but beyond that I've never really seen a problem using snap (jounce), crackle or pop; perhaps their rare use is why they were named after a cereal slogan. I do not know exactly why they are generally trivial, but I do have a guess (of course, nobody can know exactly why something in physics exists).

    I assume that the answer has something to do with energy. Energy underlies nevery concept in physics-- whether you are dealing with classical mechanics, quantum mechanics or relativity. Work (a concept extremely closely related to energy) is very easy to express in terms of force, a quantity associated with acceleration, the second derivative of position (W=F⋅d for a constant force or ∫F⋅dx for a varying force). Now, I could express this in terms of yank (Y, mass times jerk, the third derivative of position) as W=F0⋅d+Yt⋅d for a constant yank and force not varying wrt d, and in the general case W=∫∫Ydt⋅dx. I find the equation in terms of force much more appealing to use, don't you agree? In fact, you can also express kinematics for a constant jerk, but at that point I think I'd rather use calculus.
     
  21. Jul 3, 2017 #20

    jbriggs444

    User Avatar
    Science Advisor

    There is no minimum size for the required mathematical neighborhood. Any neighborhood of non-zero extent will do and can allow derivatives of all orders to be obtained (if said derivatives exist at all).

    If you are interested in estimating a derivative using imperfectly accurate physical measurements then using a larger interval may be of some benefit. Is that the point that you are trying to make?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted