Why Shift ##z_0## by ##-i\epsilon## in Non-Convergent Integrals?

  • Thread starter Thread starter Jufa
  • Start date Start date
  • Tags Tags
    Integral
Jufa
Messages
101
Reaction score
15
Homework Statement
I encounter a divergent integral when computing a commutator of two fields in quantum field theory homework
Relevant Equations
##\phi = \int \frac{dp^3}{(2\pi)^3}e^{-ipx}\hat{a}(\vec{p})##
I am asked to compute ##[\phi(x), \phi^\dagger(y)]## , with
##\phi = \int \frac{dp^3}{(2\pi)^3}e^{-ipx}\hat{a}(\vec{p})## and with z=x-y a spacelike vector. And show that this commutator does not vanish, which means that for this non-relativsitic field i.e. with ##p^0 = \frac{\vec{p}^2}{2m}## causality is violated.

After two straightforward steps I get to this

##[\phi(x), \phi^\dagger(y)] = \int \frac{dp^3}{(2\pi)^3}e^{-i \frac{\vec{p}^2}{2m}z_0}e^{i\vec{p}\cdot\vec{z}} ##

It is self-evident that this integral does not converge and, therefore, I have been suggested to shift ##z_0## by adding to it a quantity ##-i\epsilon##. This makes the integral convergent and allows one to take the limit ##\epsilon \rightarrow 0## in the end, which works perfectly.
But why are we allowed to do this? To me it seems that the integral I am asked to compute is just (I would end the problem here and say that it is not zero, just what I was demanded to prove) divergent and that this trick allows to compute not the requested integral but a different one.

I need some help on this.

Thanks in advance.
 
Physics news on Phys.org
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top