Why should the solution be periodic?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Periodic
Click For Summary

Discussion Overview

The discussion centers around the periodicity of solutions to Laplace's equation in polar coordinates, specifically in the context of a boundary value problem on a disc with Dirichlet boundary conditions. Participants explore the implications of periodicity for the angular component of the solution and the conditions under which certain values of the parameter λ lead to valid solutions.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants assert that the solution for the angular component, Θ, must be periodic due to the nature of the circular boundary conditions, where Θ(0) must equal Θ(2π).
  • Others question the validity of solutions when λ is negative, suggesting that the exponential form does not satisfy the periodicity condition.
  • Some participants propose that for λ<0, the characteristic equation leads to solutions that cannot be non-trivial under the boundary conditions.
  • There is a discussion about why λ is taken to be non-negative and specifically of the form λ=n² for periodic solutions.
  • Participants express uncertainty about how to continue deriving conditions for non-trivial solutions under different cases for λ.
  • A later reply provides a contradiction argument showing that if c₁>0 and n>0, the left-hand side can grow indefinitely, leading to a conclusion that no solution exists for λ<0.

Areas of Agreement / Disagreement

Participants generally agree on the necessity of periodicity for the solution Θ, but there is contention regarding the implications of negative values of λ and whether non-trivial solutions can exist under those conditions. The discussion remains unresolved regarding the broader implications of these findings.

Contextual Notes

Participants note that the boundary condition requires Θ(θ) to equal Θ(θ + 2πn) for any integer n, which is a stronger condition than initially considered. The implications of this condition on the solutions for different values of λ are still being explored.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

The Laplace's equation with polar coordinates is:
$$u_{rr}+\frac{1}{r} u_r +\frac{1}{r^2} u_{\theta \theta}=0$$

We suppose the boundary value problem with Dirichlet boundary conditions for the Laplace's equation on a disc with center the origin of axis and radius $a$:

$$u_{rr}+\frac{1}{r} u_r +\frac{1}{r^2} u_{\theta \theta}=0, \ \ \ \ 0 \leq r \leq a, \ \ \ 0 \leq \theta \leq 2 \pi$$
$$u(a,\theta)=h(\theta), \ \ \ \ 0 \leq \theta \leq 2 \pi$$

The boundary condition should be continuous everywhere, so $h(0)=h(2 \pi)$.

Solving the problem with the method separation of variables, we have the following:

The solution is of the form $u(r , \theta)= R(r) \Theta(\theta)$, which are continuous at $[0,a] \times [0 , 2 \pi]$ and periodic as for $\theta$, with period $2 \pi$.

So we get the problems:

$$(1):\Theta''+\lambda\Theta=0$$
$$\Theta(0)=\Theta(2 \pi)$$

and

$$(2):r^2 R'+rR'-\lambda R=0$$

For the problem $(1)$:

So that there is a non-trivial periodic solution it should be $\lambda \geq 0$.

$\lambda_0=0: \Theta_0(\theta)=1$

$\lambda=n^2: \Theta(\theta)=A_n \cos{(n \theta)}+B_n \sin{(n \theta)}$
Why should the solution of $\Theta$ be periodic?? (Wondering)

And the case $\lambda<0$, where the solution would be of the form: $\Theta=c_1e^{n \theta}+c_2e^{-n \theta}$, is rejected, because the exponential is not periodic?? (Wondering)

And also, why at the case $\lambda>0$ do we take: $\lambda=n^2$?? (Wondering)
 
Physics news on Phys.org
Hi! ;)

mathmari said:
Why should the solution of $\Theta$ be periodic?? (Wondering)

$\Theta$ is a function of the angle $\theta$.
Since there are $2\pi$ radians in a full circle that means that $\Theta(0)= \Theta(2\pi)$.
Moreover, any value must be identical to a value $2\pi$ radians along on the circle.
That is because it is the same point. (Nerd)
And the case $\lambda<0$, where the solution would be of the form: $\Theta=c_1e^{n \theta}+c_2e^{-n \theta}$, is rejected, because the exponential is not periodic?? (Wondering)

Correct.
It will not hold that $\Theta(\theta) = \Theta(\theta + 2\pi)$.
And also, why at the case $\lambda>0$ do we take: $\lambda=n^2$?? (Wondering)

Perhaps you can solve it with just $\lambda>0$?
What does your solution look like? (Wondering)
 
I like Serena said:
$\Theta$ is a function of the angle $\theta$.
Since there are $2\pi$ radians in a full circle that means that $\Theta(0)= \Theta(2\pi)$.
Moreover, any value must be identical to a value $2\pi$ radians along on the circle.
That is because it is the same point. (Nerd)

Ok! I understand! (Nod)

I like Serena said:
Correct.
It will not hold that $\Theta(\theta) = \Theta(\theta + 2\pi)$.
Besides noticing that the exponential is not periodic, if we would solve this problem taking cases for $\lambda$ would the case $\lambda<0$ be rejected when applying the boundary conditions?

I mean the following:

The characteristic equation is $m^2+\lambda =0 \Rightarrow m^2=-\lambda$

$\lambda<0: \lambda=-k, k>0$
$m^2=k \Rightarrow m= \pm \sqrt{k}$
$\Theta(\theta)=c_1e^{\sqrt{k} \theta}+c_2 e^{-\sqrt{k} \theta}$
$\Theta(0)=c_1+c_2 $
$\Theta(2 \pi)=c_1e^{\sqrt{k} 2 \pi}+c_2 e^{-2 \sqrt{k} \pi }$
$\Theta(0)=\Theta(2 \pi) \Rightarrow c_1+c_2=c_1e^{\sqrt{k} 2 \pi}+c_2 e^{-2 \sqrt{k} \pi } \Rightarrow e^{\sqrt{k} 2 \pi}c_1=c_2$
Is this correct?? How could I continue to find out that we cannot have a non-trivial solution at this case?? Or can we not do this in that way?? (Wondering)
I like Serena said:
Perhaps you can solve it with just $\lambda>0$?
What does your solution look like? (Wondering)

$\lambda>0:$
$\Theta(\theta)=c_1 \cos{(\sqrt{\lambda} \theta)}+c_2 \sin{(\sqrt{\lambda} \theta)}$
$\Theta(0)=c_1 $
$\Theta(2 \pi)=c_1 \cos{(\sqrt{\lambda} 2 \pi)}+c_2 \sin{(\sqrt{\lambda} 2 \pi)}$
$\Theta(0)=\Theta(2 \pi) \Rightarrow c_1=c_1 \cos{(\sqrt{\lambda} 2 \pi)}+c_2 \sin{(\sqrt{\lambda} 2 \pi)} \Rightarrow c_1(1-\cos{(\sqrt{\lambda} 2 \pi)})=c_2 \sin{(\sqrt{\lambda} 2 \pi)}$

How could I continue?? (Wondering)
 
mathmari said:
Besides noticing that the exponential is not periodic, if we would solve this problem taking cases for $\lambda$ would the case $\lambda<0$ be rejected when applying the boundary conditions?

I mean the following:

The characteristic equation is $m^2+\lambda =0 \Rightarrow m^2=-\lambda$

$\lambda<0: \lambda=-k, k>0$
$m^2=k \Rightarrow m= \pm \sqrt{k}$
$\Theta(\theta)=c_1e^{\sqrt{k} \theta}+c_2 e^{-\sqrt{k} \theta}$
$\Theta(0)=c_1+c_2 $
$\Theta(2 \pi)=c_1e^{\sqrt{k} 2 \pi}+c_2 e^{-2 \sqrt{k} \pi }$
$\Theta(0)=\Theta(2 \pi) \Rightarrow c_1+c_2=c_1e^{\sqrt{k} 2 \pi}+c_2 e^{-2 \sqrt{k} \pi } \Rightarrow e^{\sqrt{k} 2 \pi}c_1=c_2$
Is this correct?? How could I continue to find out that we cannot have a non-trivial solution at this case?? Or can we not do this in that way?? (Wondering)

The boundary condition is a bit stronger.
We need that:
$$\Theta(\theta) = \Theta(\theta + 2\pi n)$$
for any $\theta$ and for any integer $n$.

What would happen if we substitute that? (Wondering)
$\lambda>0:$
$\Theta(\theta)=c_1 \cos{(\sqrt{\lambda} \theta)}+c_2 \sin{(\sqrt{\lambda} \theta)}$
$\Theta(0)=c_1 $
$\Theta(2 \pi)=c_1 \cos{(\sqrt{\lambda} 2 \pi)}+c_2 \sin{(\sqrt{\lambda} 2 \pi)}$
$\Theta(0)=\Theta(2 \pi) \Rightarrow c_1=c_1 \cos{(\sqrt{\lambda} 2 \pi)}+c_2 \sin{(\sqrt{\lambda} 2 \pi)} \Rightarrow c_1(1-\cos{(\sqrt{\lambda} 2 \pi)})=c_2 \sin{(\sqrt{\lambda} 2 \pi)}$

How could I continue?? (Wondering)

Same thing. (Sweating)
 
I like Serena said:
The boundary condition is a bit stronger.
We need that:
$$\Theta(\theta) = \Theta(\theta + 2\pi n)$$
for any $\theta$ and for any integer $n$.

What would happen if we substitute that? (Wondering)

$\lambda<0: \lambda=-k, k>0$
$m^2=k \Rightarrow m= \pm \sqrt{k}$
$\Theta(\theta)=c_1e^{\sqrt{k} \theta}+c_2 e^{-\sqrt{k} \theta}$
$\Theta(\theta +2 \pi n)=c_1e^{\sqrt{k} (\theta +2 \pi n)}+c_2 e^{-\sqrt{k}( \theta +2 \pi n)}$

$\Theta(\theta) = \Theta(\theta + 2\pi n) \Rightarrow c_1e^{\sqrt{k} \theta}+c_2 e^{-\sqrt{k} \theta}=c_1e^{\sqrt{k} (\theta +2 \pi n)}+c_2 e^{-\sqrt{k}( \theta +2 \pi n)} \Rightarrow c_1(e^{\sqrt{k} \theta}-e^{\sqrt{k}( \theta +2 \pi n)})=c_2(e^{-\sqrt{k} (\theta+ 2 \pi n)} -e^{-\sqrt{k} \theta}) $

How could I continue?? (Wondering) I got stuck right now.. (Worried)
 
mathmari said:
$\lambda<0: \lambda=-k, k>0$
$m^2=k \Rightarrow m= \pm \sqrt{k}$
$\Theta(\theta)=c_1e^{\sqrt{k} \theta}+c_2 e^{-\sqrt{k} \theta}$
$\Theta(\theta +2 \pi n)=c_1e^{\sqrt{k} (\theta +2 \pi n)}+c_2 e^{-\sqrt{k}( \theta +2 \pi n)}$

$\Theta(\theta) = \Theta(\theta + 2\pi n) \Rightarrow c_1e^{\sqrt{k} \theta}+c_2 e^{-\sqrt{k} \theta}=c_1e^{\sqrt{k} (\theta +2 \pi n)}+c_2 e^{-\sqrt{k}( \theta +2 \pi n)} \Rightarrow c_1(e^{\sqrt{k} \theta}-e^{\sqrt{k}( \theta +2 \pi n)})=c_2(e^{-\sqrt{k} (\theta+ 2 \pi n)} -e^{-\sqrt{k} \theta}) $

How could I continue?? (Wondering) I got stuck right now.. (Worried)

It is not possible. (Worried)

We have:
$$c_1e^{\sqrt{k} \theta}+c_2 e^{-\sqrt{k} \theta} = c_1e^{\sqrt{k} (\theta +2 \pi n)}+c_2 e^{-\sqrt{k}( \theta +2 \pi n)}$$
$$c_1e^{\sqrt{k} (\theta +2 \pi n)} - c_1e^{\sqrt{k} \theta} = c_2 e^{-\sqrt{k} \theta} - c_2 e^{-\sqrt{k}( \theta +2 \pi n)}$$
Suppose $c_1 > 0$ and $n > 0$, then both sides are positive.
And for large enough $\theta$ the right hand side becomes as small as we want it to be.
Let's say the right hand side is smaller than $\epsilon > 0$.

Then we have:
$$|c_1 e^{\sqrt k (\theta + 2\pi n)} - c_1 e^{\sqrt k \theta}| < \epsilon$$
$$c_1 e^{\sqrt k \theta} | e^{\sqrt k \cdot 2\pi n} - 1| < \epsilon$$
But the left hand side can become as big as we want it to be, since we can pick $n$ as big as we want.
This is a contradiction.

So there is no solution for $\lambda<0$. (Wasntme)
 
I like Serena said:
It is not possible. (Worried)

We have:
$$c_1e^{\sqrt{k} \theta}+c_2 e^{-\sqrt{k} \theta} = c_1e^{\sqrt{k} (\theta +2 \pi n)}+c_2 e^{-\sqrt{k}( \theta +2 \pi n)}$$
$$c_1e^{\sqrt{k} (\theta +2 \pi n)} - c_1e^{\sqrt{k} \theta} = c_2 e^{-\sqrt{k} \theta} - c_2 e^{-\sqrt{k}( \theta +2 \pi n)}$$
Suppose $c_1 > 0$ and $n > 0$, then both sides are positive.
And for large enough $\theta$ the right hand side becomes as small as we want it to be.
Let's say the right hand side is smaller than $\epsilon > 0$.

Then we have:
$$|c_1 e^{\sqrt k (\theta + 2\pi n)} - c_1 e^{\sqrt k \theta}| < \epsilon$$
$$c_1 e^{\sqrt k \theta} | e^{\sqrt k \cdot 2\pi n} - 1| < \epsilon$$
But the left hand side can become as big as we want it to be, since we can pick $n$ as big as we want.
This is a contradiction.

So there is no solution for $\lambda<0$. (Wasntme)

Ahaa..Ok! (Thinking)(Sweating)Is this the same at the case $\lambda>0$?

$\Theta(\theta)=c_1 \cos{(\sqrt{\lambda} \theta)}+c_2 \sin{(\sqrt{\lambda} \theta)}$
$\Theta(\theta+2 \pi n)=c_1 \cos{(\sqrt{\lambda} (\theta+2 \pi n))}+c_2 \sin{(\sqrt{\lambda} (\theta+2 \pi n))}$

$\Theta(\theta)=\Theta(\theta+2 \pi n) \Rightarrow c_1 \cos{(\sqrt{\lambda} \theta)}+c_2 \sin{(\sqrt{\lambda} \theta)}=c_1 \cos{(\sqrt{\lambda} (\theta+2 \pi n))}+c_2 \sin{(\sqrt{\lambda} (\theta+2 \pi n))} \Rightarrow c_1(\cos{(\sqrt{\lambda} \theta)}-\cos{(\sqrt{\lambda} (\theta+2 \pi n))})=c_2(\sin{(\sqrt{\lambda} (\theta+2 \pi n))}- \sin{(\sqrt{\lambda} \theta)}) $

Could I continue from here? (Wondering)
Or is there an other way to check this case?
How can I conclude that $\lambda = n^2$ ? (Wondering)
 
mathmari said:
Ahaa..Ok! (Thinking)(Sweating)Is this the same at the case $\lambda>0$?

$\Theta(\theta)=c_1 \cos{(\sqrt{\lambda} \theta)}+c_2 \sin{(\sqrt{\lambda} \theta)}$
$\Theta(\theta+2 \pi n)=c_1 \cos{(\sqrt{\lambda} (\theta+2 \pi n))}+c_2 \sin{(\sqrt{\lambda} (\theta+2 \pi n))}$

$\Theta(\theta)=\Theta(\theta+2 \pi n) \Rightarrow c_1 \cos{(\sqrt{\lambda} \theta)}+c_2 \sin{(\sqrt{\lambda} \theta)}=c_1 \cos{(\sqrt{\lambda} (\theta+2 \pi n))}+c_2 \sin{(\sqrt{\lambda} (\theta+2 \pi n))} \Rightarrow c_1(\cos{(\sqrt{\lambda} \theta)}-\cos{(\sqrt{\lambda} (\theta+2 \pi n))})=c_2(\sin{(\sqrt{\lambda} (\theta+2 \pi n))}- \sin{(\sqrt{\lambda} \theta)}) $

Could I continue from here? (Wondering)
Or is there an other way to check this case?
How can I conclude that $\lambda = n^2$ ? (Wondering)

This has to be true for any $\theta$.
That can only happen if the terms cancel.

That is, if we assume that $c_1 \ne 0$, we get that:
$$\cos(\sqrt{\lambda} \theta)-\cos(\sqrt{\lambda} (\theta+2 \pi n)) = 0$$
This can only be true if $\sqrt \lambda$ is an integer. (Thinking)
 
I like Serena said:
This has to be true for any $\theta$.
That can only happen if the terms cancel.

That is, if we assume that $c_1 \ne 0$, we get that:
$$\cos(\sqrt{\lambda} \theta)-\cos(\sqrt{\lambda} (\theta+2 \pi n)) = 0$$
This can only be true if $\sqrt \lambda$ is an integer. (Thinking)

I haven't understood why that happens only if the terms cancel.. (Doh)
 
  • #10
mathmari said:
I haven't understood why that happens only if the terms cancel.. (Doh)

Can you simplify:
$$c_1(\cos{(\sqrt{\lambda} \theta)}-\cos{(\sqrt{\lambda} (\theta+2 \pi n))})=c_2(\sin{(\sqrt{\lambda} (\theta+2 \pi n))}- \sin{(\sqrt{\lambda} \theta)})$$

I suggest to use the sum-to-product identities:
$$\cos p - \cos q = -2\sin\frac 1 2(p+q) \sin\frac 1 2(p-q)$$
$$\sin p - \sin q = 2\cos\frac 1 2(p+q) \sin\frac 1 2(p-q)$$
(Thinking)
 
  • #11
I like Serena said:
Can you simplify:
$$c_1(\cos{(\sqrt{\lambda} \theta)}-\cos{(\sqrt{\lambda} (\theta+2 \pi n))})=c_2(\sin{(\sqrt{\lambda} (\theta+2 \pi n))}- \sin{(\sqrt{\lambda} \theta)})$$

I suggest to use the sum-to-product identities:
$$\cos p - \cos q = -2\sin\frac 1 2(p+q) \sin\frac 1 2(p-q)$$
$$\sin p - \sin q = 2\cos\frac 1 2(p+q) \sin\frac 1 2(p-q)$$
(Thinking)

$$c_1(\cos{(\sqrt{\lambda} \theta)}-\cos{(\sqrt{\lambda} (\theta+2 \pi n))})=c_2(\sin{(\sqrt{\lambda} (\theta+2 \pi n))}- \sin{(\sqrt{\lambda} \theta)}) \Rightarrow \\

-2 c_1 \sin{(\frac{1}{2} (\sqrt{\lambda} \theta+\sqrt{\lambda} (\theta+2 \pi n)))} \sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} =2 c_2 \cos{(\frac{1}{2} (\sqrt{\lambda} \theta+\sqrt{\lambda} (\theta+2 \pi n)))} \sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} \Rightarrow \\

-c_1 \sin{( \sqrt{\lambda} (\theta+ \pi n))} = c_2 \cos{(\sqrt{\lambda} (\theta+ \pi n))} $$

Is this correct so far??

How can I continue?? (Wondering)
 
  • #12
mathmari said:
$$c_1(\cos{(\sqrt{\lambda} \theta)}-\cos{(\sqrt{\lambda} (\theta+2 \pi n))})=c_2(\sin{(\sqrt{\lambda} (\theta+2 \pi n))}- \sin{(\sqrt{\lambda} \theta)}) \Rightarrow \\

-2 c_1 \sin{(\frac{1}{2} (\sqrt{\lambda} \theta+\sqrt{\lambda} (\theta+2 \pi n)))} \sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} =2 c_2 \cos{(\frac{1}{2} (\sqrt{\lambda} \theta+\sqrt{\lambda} (\theta+2 \pi n)))} \sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} \Rightarrow \\

-c_1 \sin{( \sqrt{\lambda} (\theta+ \pi n))} = c_2 \cos{(\sqrt{\lambda} (\theta+ \pi n))} $$

Is this correct so far??

You seem to have dropped a $-$ sign. :eek:
Note that:
$$\sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))}
= \sin{(- \sqrt{\lambda} \pi n)}
= - \sin{(\sqrt{\lambda} \pi n)}$$

How can I continue?? (Wondering)

This should be true for any $\theta$ and $n$.
Suppose we pick $\theta = 0$ and $n=0$... (Thinking)
 
  • #13
I like Serena said:
You seem to have dropped a $-$ sign. :eek:
Note that:
$$\sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))}
= \sin{(- \sqrt{\lambda} \pi n)}
= - \sin{(\sqrt{\lambda} \pi n)}$$
This should be true for any $\theta$ and $n$.
Suppose we pick $\theta = 0$ and $n=0$... (Thinking)
$$c_1(\cos{(\sqrt{\lambda} \theta)}-\cos{(\sqrt{\lambda} (\theta+2 \pi n))})=c_2(\sin{(\sqrt{\lambda} (\theta+2 \pi n))}- \sin{(\sqrt{\lambda} \theta)}) \Rightarrow \\

-2 c_1 \sin{(\frac{1}{2} (\sqrt{\lambda} \theta+\sqrt{\lambda} (\theta+2 \pi n)))} \sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} =-2 c_2 \cos{(\frac{1}{2} (\sqrt{\lambda} \theta+\sqrt{\lambda} (\theta+2 \pi n)))} \sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} \Rightarrow \\

c_1 \sin{( \sqrt{\lambda} (\theta+ \pi n))} = c_2 \cos{(\sqrt{\lambda} (\theta+ \pi n))} \Rightarrow \\

c_1 \sin{( \sqrt{\lambda} \theta+ \sqrt{\lambda}\pi n)} = c_2 \cos{(\sqrt{\lambda} \theta+ \sqrt{\lambda}\pi n)} \Rightarrow \\

c_1(\sin{(\sqrt{\lambda} \theta)} \cos{(\sqrt{\lambda} \pi n)}+\cos{(\sqrt{\lambda} \theta)} \sin{(\sqrt{\lambda} \pi n)})=c_2(\cos{(\sqrt{\lambda} \theta)} \cos{(\sqrt{\lambda} \pi n)}-\sin{(\sqrt{\lambda} \theta)} \sin{(\sqrt{\lambda} \pi n)})

$$

Is it better now? Can I get from the last relation something usefull? Or didn't I have to write in that way? (Wondering)
 
  • #14
Yep! All better! (Nod)

Let's stick with:
$$c_1 \sin{( \sqrt{\lambda} (\theta+ \pi n))} = c_2 \cos{(\sqrt{\lambda} (\theta+ \pi n))}$$
What do you get if you substitute $\theta=0$ and simultaneously $n=0$? (Thinking)
 
  • #15
I like Serena said:
Yep! All better! (Nod)

Let's stick with:
$$c_1 \sin{( \sqrt{\lambda} (\theta+ \pi n))} = c_2 \cos{(\sqrt{\lambda} (\theta+ \pi n))}$$
What do you get if you substitute $\theta=0$ and simultaneously $n=0$? (Thinking)

For $\theta=0$ and $n=0$:
$$0= c_2 $$

So do we take $c_2=0$ and replace it at $c_1 \sin{( \sqrt{\lambda} (\theta+ \pi n))} = c_2 \cos{(\sqrt{\lambda} (\theta+ \pi n))}$?

Then we get:
$$c_1 \sin{( \sqrt{\lambda} (\theta+ \pi n))}=0 \Rightarrow \\ \sin{( \sqrt{\lambda} (\theta+ \pi n))}=0 \Rightarrow \\ \sqrt{\lambda} (\theta+ \pi n)=n \pi \Rightarrow \\ \sqrt{\lambda}=\frac{n \pi}{\theta+n \pi} \Rightarrow \\ \lambda=(\frac{n \pi}{\theta+n \pi})^2 $$Is $\displaystyle{\frac{n \pi}{\theta+n \pi}}$ an integer?? (Thinking) It isn't, right?
 
  • #16
mathmari said:
$$\lambda=(\frac{n \pi}{\theta+n \pi})^2 $$

Is $\displaystyle{\frac{n \pi}{\theta+n \pi}}$ an integer?? (Thinking) It isn't, right?

Hold on! :eek:
$\lambda$ is a constant, while $(\frac{n \pi}{\theta+n \pi})^2$ is not a constant.
This is supposed to be true for any $\theta$ and $n$.
I don't think it is, is it?Let's back up a step.

mathmari said:
$$-2 c_1 \sin{(\frac{1}{2} (\sqrt{\lambda} \theta+\sqrt{\lambda} (\theta+2 \pi n)))} \sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} =-2 c_2 \cos{(\frac{1}{2} (\sqrt{\lambda} \theta+\sqrt{\lambda} (\theta+2 \pi n)))} \sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} \Rightarrow \\

c_1 \sin{( \sqrt{\lambda} (\theta+ \pi n))} = c_2 \cos{(\sqrt{\lambda} (\theta+ \pi n))}
$$

Actually, didn't you drop a possible solution here?

What if $\sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} = 0$? (Thinking)

See my avatar for what could be going wrong. (Evilgrin)
 
  • #17
I like Serena said:
Actually, didn't you drop a possible solution here?

What if $\sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} = 0$? (Thinking)

See my avatar for what could be going wrong. (Evilgrin)

(Blush)

$\sin{(\frac{1}{2} (\sqrt{\lambda} \theta-\sqrt{\lambda} (\theta+2 \pi n)))} = 0 \Rightarrow \sin{(\sqrt{\lambda} \pi n)}=0 \Rightarrow \sqrt{\lambda} \pi n= k \pi \Rightarrow \sqrt{\lambda}=\frac{k}{n}$

Is this correct? (Wondering)

But we do not know if $\displaystyle{\frac{k}{n}}$ is an integer, do we? (Wondering)
 
Last edited by a moderator:

Similar threads

  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
5K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K