colorSpace
- 258
- 0
vanesch said:There is no known fundamental requirement to a "limit on information" that a mathematical entity representing physical entities is to have. As I pointed out, a single point particle in a classical 3-dim space is already represented by a mathematical entity which requires an infinite amount of bits (namely a point in E^3, isomorphic to 3 real numbers).
I consider it an advantage of MWI to show the *hugeness* of hilbertspace as postulated by the quantum formalism (remember that my aim, with MWI, is to "get a better feeling of the workings of the quantum formalism", not to have a postulated "true worldpicture").
What I try to do is to show that it is conceivable to replace the global wavefunction (the vector in hilbert space describing the "state of the universe") by a set of other entities, the "kets of individual systems + label structure", so that we can consider all of these entities as localised in space, and to have their evolution be determined by only OTHER entities in space that are at the same spacetime locality. IF I can find such a way of building these entities and dynamics, then I am justified in claiming that the global wavefunction dynamics represents a local dynamics. I tried to illlustrate that with some analogy: the dynamics in Hamiltonian phase space "looks global", but it can be re-written in such a way that it only uses "localised entities" and "local interactions". I'm trying to do the same here for quantum dynamics.
There is a difference of many orders of magnitude between 3 real numbers and 20 Million complex numbers plus 10 Million unique id's! And one could debate that even the 3 real numbers for the 3D coordinates are "carried" along by the particle, as you have said happens for the A/B, x and y information.
I'm not really impressed by the "hugeness of hilbertspace", you have mentioned already that it has many dimensions. At this point it seems to be a) a purely mathematical construct for the convenience of physicists to do calculations, and b) you haven't shown yet (at least not in a way that I would be able confirm or reject) how the many dimensions of hilbertspace can be used to make the case that the information can be "carried" along in a way that maps to a 3D-local physical explanation. I'm not debating mathematical possibilities, from the beginning not, but the physical possibility of storing and handling this information. You haven't shown to me, yet, how this information can be stored and then used in a way that could be called 3D-local. "Dimensions" by themselves do not constitute usable information.
I'm especially curious about the 10 Million unique id's!
If you think I concede at this point, think again. We have merely come to the point where we can discuss the question I was asking, but there is no answer to it in sight yet, as far as I am concerned.
Hilbertspace is common to all interpretations of quantum mechanics, and other interpretations haven't been able to use it for a local explanation. You have shown me how MWI could attempt to provide a local explanation, *if* it could carry the information in a local fashion, *and* if it could then be used to do the "pairing-up" in a local fashion. But you haven't shown me any *specific* way yet how *either* of the latter would be possible in a meaningful physical way that makes sense, and that could be mapped to 3D-space in a way in which it can then be decided that it could be called "local".
You have only *claimed* that it *should* be possible because hilbertspace has so many dimensions.
I don't see why 3 dimensions shouldn't be enough. The problem is to come up with a way to store that information, even if it is just in the 'coordinates', that works as part of a meaningful physical process. BTW, is hibertspace euclidian, or curved? Is it generally acknowledged that hilbertspace has physical reality, or is that a specific theory?
Yet those were the objections I had from the beginning.
So you have merely reached the starting point for discussing the objections which I had from the beginning.
What else do I need to say to clarify that, if it isn't clear yet?
vanesch said:No, that is not true. When we did the split A-B, we "picked" a reference axis for the two entangled particles in the source. We saw that we could have picked any axis, but when assigning the labels A and B, we had to choose one of them. So we have arbitrarily associated, with the |u+A> state, a particular direction in space, shared with |v-A>.
Now, the numbers x and y are a result, PURELY LOCALLY AT BOB'S, of his measurement basis (his axis of analyser), and the axis fixed in the A/B-label. So, x and y are "generated" locally at bob's and he doesn't need anything about alice to do so.
In the same way, the numbers r and s are the result, purely locally at alice, of her measurement basis (her analyser axis) and the fixed axis in the A/B label (which comes to her with the v-ket).
So x,y,r, and s are determined locally.
Your response is evading a very simple point. I've said that the term (-xs + yr) is non-local as long as x and y refer to physical states at one location, and r and s refer to states at a different location. That changes when x, y, r and s are brought to the same location. It became clear only recently that the term (-xs + yr), in relation to A and B, is information that may resolve the problem. However you haven't shown yet how that is supposed to happen, and certainly not in a way that I could form an opinion about whether that might be a *physical* and *local* possibility, rather than just a theoretical one plainly *assuming* infinite storage capabilities, just because hilbertspace has so many dimensions.
vanesch said:Yes, of course it is "additional information". It is the "algebraic information" that is normally included in the form of the wavefunction, which must now be "distributed" amongst all its constituents. As such, it will determine part of the "local dynamics" (which would correspond to simple algebraic operations on the global wavefunction, such as multiplications, distributivity and complex sums), which has now to take care of this locally.
But the point is that we CAN construct such mathematical objects associated with the different localised states, and that at no point, we need to have dynamical rules which need "information from states at different locations" to have a dynamical change (of the kets, or of the additional information). In other words, you can build mathematical structures which are all the time indexable over space, with a dynamical rule which is also only function of the structures at the same locality, and which is isomorphic to the global wavefunction dynamics. If you can do that, then the global dynamics represents a local dynamics, and that was the aim of the exercise.
"Algebraic information"? Which "exercise"? You need to specify physical means in order to have a physical theory. I have from the beginning doubted that there is a *physical* way to carry that possibly huge amount of information along, and that it can then be used to do the "pairing-up"
vanesch said:Yes, so ? Hilbert space is HUGE. The "information" carried by the wavefunction (a point in hilbert space) is enormous. As such, you shouldn't be surprised that if you scatter this information over local structures, that they have to carry a lot of information.
How huge? You intend to store the information in terms of the coordinates of the wavefunction in space? What does "N" in 6N refer to? How many dimensions do you need to store 20 million complex numbers plus 10 million unique id's? And that number could easily be larger. How do you you store the equivalent of unique id's in a coordinate? How are those wavefunctions going to interact at all if they are so scattered in space? How will A/B, and the angles of measurement be translated into coordinates? does hilbertspace have dimensions that go from -1.0 to 1.0 like cos and sin?
Perhaps it would be asking a lot to explain that to someone like me, but I don't see any answer at all, not even one that I wouldn't understand.
vanesch said:Nobody required you to run the quantum universe on a pentium-3 machine with 128MB of RAM![]()
The question of how to use that information to do the "pairing-up" is not just one of scale. If you make silly jokes, I have to assume that you don't actually have an answer.
And that means that apparently MWI isn't a viable physical theory. Just a game of playing around with hilbert dimensions in a purely mathematical fashion of thinking: 'As long as we have enough dimensions, we can do anything we want...'
vanesch said:As I said, hilbert space is really, really big. This is the problem on which quantum chemistry breaks its teeth btw., the huge "solution space". If this exercise can make you see the hugeness of hilbertspace, then it has already had a good effect!
But, as I repeated earlier, even a single point in euclidean space alrready carries "infinite information".
I'm not impressed by a purely mathematical possibility of infinite dimensions as a magic solution. On the contrary, if a space of infinite dimensions is required also as a *physical reality*, then I'm more tempted to think there isn't any viable theory at all.
So I hope I've made clear why I don't find all this convincing.
However I'm not really expecting any more insightful explanations, so perhaps this is the time to discuss the 3 particle GHZ entanglement case:
We haven't yet discussed any case for which Bell's theorem actually states that there can't be a local explanation. This is one, and I hope that my limited understanding of GHZ entanglement is sufficient to discuss the challenge it poses for a local explanation using "pairing-up" of local MWI-like splits.
As I've described briefly already, there are three particles entangled, at locations A, B, and C, again with variable measurement angles at each location. In GHZ, there is also the situation that for a specific combination of angles, the result at the third location is definite rather than probabilistic, similar to the spin in a two particle entanglement being always opposite, when the angles are the same.
So for a specific combination of angles at A, B and C, the results will have a specific relation to each other, whereas for other combinations the relation will be probabilistic.
Let's say the angle at C will be modified to cause either one or the other case.
A, B and C make their measurements, and the A and B send a message at speed of light to midpoint "AB". AB is closer to A and B, than to C. so when the messages from A and B arrive at AB, information from C won't be available yet.
Yet similar to the case described in your message #72, A and B meet with the corresponding options. The angles at A and B alone can't determine whether the outcome will be definite or probabilistic, so what we called "bobalice++" won't have any term like (-xs + yr) that cancels out. That means, if the pairing-up is done locally, "bobalice++" must be allowed to develop, even though when meeting C, that combination may turn out to be impossible, depending on the angle at C. Will bobalice++ then 'vanish' in some way, or not allowed to meet C? That would seem absurd.
That is the challenge.
