MHB Wizard1's question at Yahoo Answers (Isometry)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Isometry
AI Thread Summary
The discussion confirms that the translation map T: H→H, defined as T(x,y) = (x, y+1), is an isometry of the set H = {(x,y) ∈ ℝ^2 : y > 0}. It establishes that T is well-defined since for any point (x,y) in H, the output (x, y+1) remains in H. The proof shows that the distance between points after applying T remains equal to the original distance, confirming T's isometric property. The mathematical verification involves calculating the Euclidean distance before and after the transformation, which yields the same result. Thus, T is indeed an isometry of H.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Let H = {(x,y) ∈ ℝ^2 : y > 0}, with the usual Euclidean distance. Let T: H→H be the translation map: T(x,y) = (x, y+1) for all (x,y) ∈ H. Verify that T is an isometry of H.
Thanks!

Here is a link to the question:

Verify that T is an isometry of H...? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello wizard1,

If $(x,y)\in H$ then, $y>0$ which implies $y+1>0$. As a consequence, the map $T:H\to H$ is well defined. Now, for all $(x,y)$ and $(x',y')$ points of $H$: $$\begin{aligned}d[T(x,y),T(x',y')]&=d[(x,y+1),(x',y'+1)]\\&=\sqrt{(x'-x)^2+(y'+1-x'-1)^2}\\&=\sqrt{(x'-x)^2+(y'-x')^2}\\&=d[(x,y),(x',y')]\end{aligned}$$ That is, $T$ is an isometry.
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top