MHB Wolf of the Red Moon: Calc Work Problem, Need Help!

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Computation Work
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Need help with a Calculus Work problem...have answer not sure how to get to it?

A cylindrical gasoline tank 3ft in diameter and 4ft long is carried on the back of a truck and used to fuel tractors in the field. The axis of the tank is horizontal. Find the work done to pump the entire contents of the tank into a tractor if the opening on the tractor's tank is 5ft above the top of the tank in the truck. Assume gasoline weighs 42 lbs per cubic foot.

(Hint: Evaluate one integral by a geometric formula and the other by observing that the integrand is an odd function.)

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Re: Wolf of the Red Moon's question regarding the computation of work

Hello Wolf of the Red Moon,

I prefer to work problems like this in general terms, and then plug our given data into the resulting formula.

First, let's let:

$r$ = the radius of the tank

$\ell$ = the length of the tank

$q$ = the distance above the top of the tank the fluid must be pumped

Now, let's imagine slicing the contents of the tank horizontally into rectangular sheets. The length of each sheet is constant, given by the length of the tank $\ell$. The width $w$ of each sheet will be a function of its vertical position within the tank.

So, let's orient a vertical axis, with its origin at the bottom of the tank, as in the diagram:

View attachment 1011

We wish to find $w$ as a function of $y$. We should observe that we may state:

$$(y-r)^2+\left(\frac{w}{2} \right)^2=r^2$$

Hence:

$$w(y)=2\sqrt{r^2-(y-r)^2}$$

and so the volume of an arbitrary sheet is:

$$dV=\ell\cdot w(y)\,dy=2\ell\sqrt{r^2-(y-r)^2}\,dy$$

Next, we want to determine the weight $\omega$ of the arbitrary sheet. So let's define $\rho$ to be the weight density of the fluid, where:

$$\rho=\frac{\omega}{dV}\,\therefore\,\omega=\rho\,dV$$

Hence:

$$\omega=2\rho\ell\sqrt{r^2-(y-r)^2}\,dy$$

Next, we want to determine the distance $d$ the arbitrary sheet must be lifted. This is:

$$d=q+(2r-y)$$

Thus, using the fact that work is the product of the applied force and the distance through which this force is applied, we find the work done to lift the arbitrary sheet is:

$$dW=\omega d=(q+(2r-y))\left(2\rho\ell\sqrt{r^2-(y-r)^2}\,dy \right)$$

In order to utilize the given useful hint, we may arrange this as:

$$dW=\omega d=((q+r)-(y-r))\left(2\rho\ell\sqrt{r^2-(y-r)^2}\,dy \right)$$

Now, summing by integration from the bottom of the tank $y=0$ to the top $y=2r$, we may state:

$$W=2(q+r)\rho\ell\int_0^{2r}\sqrt{r^2-(y-r)^2}\,dy-2\rho\ell\int_0^{2r}(y-r)\sqrt{r^2-(y-r)^2}\,dy$$

Now, by geometry, we should observe that:

$$2\int_0^{2r}\sqrt{r^2-(y-r)^2}\,dy=\pi r^2$$

Notice this is simply the area of a circle of radius $r$.

And we may also observe that the integral:

$$\int_0^{2r}(y-r)\sqrt{r^2-(y-r)^2}\,dy$$

may be rewritten using the substitution:

$$u=y-r\,\therefore\,du=dy$$

and we have:

$$\int_{-r}^{r} u\sqrt{r^2-u^2}\,du$$

Since the integrand is an odd function, and the interval of integration symmetric about the origin, we may state by the odd function rule:

$$\int_{-r}^{r} u\sqrt{r^2-u^2}\,du=0$$

Putting this all together, we have:

$$W=\pi(q+r)r^2\rho\ell$$

Now, plugging in the given data:

$$q=5\text{ ft}$$

$$r=\frac{3}{2}\text{ ft}$$

$$\rho=42\,\frac{\text{lb}}{\text{ft}^3}$$

$$\ell=4\text{ ft}$$

we find:

$$W=\pi\left(\left(5+\frac{3}{2} \right)\text{ ft} \right)\left(\frac{3}{2}\text{ ft} \right)^2\left(42\,\frac{\text{lb}}{\text{ft}^3} \right)\left(4\text{ ft} \right)=2457\pi\text{ ft}\cdot\text{lb}$$
 

Attachments

  • wotrm1.jpg
    wotrm1.jpg
    4.3 KB · Views: 98
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top