B Work Done By Conservative Forces

  • Thread starter Thread starter Heisenberg7
  • Start date Start date
  • Tags Tags
    Forces Work
Click For Summary
Work done by conservative forces is defined as the negative change in potential energy, expressed mathematically as W_c = -ΔU. This relationship connects to the work-energy theorem, which states that the change in kinetic energy (ΔK) is equal to the work done on an object. In scenarios where only conservative forces, like gravity, are acting, the work done translates directly into changes in kinetic energy. For example, when a mass falls, the work done by gravity increases its kinetic energy while decreasing its potential energy, illustrating the connection between these concepts. Understanding this relationship helps clarify how energy is conserved in mechanical systems.
Heisenberg7
Messages
101
Reaction score
18
I did classical mechanics a while ago and I was going over some stuff that I wasn't sure if I understood correctly and now I've come over this one. It says that work done by conservative forces is equal to the negative difference in potential energy. Or, ##W_c = - \Delta U##. And I've really been trying to make sense of this. I know that when energy is conserved we have ##\Delta E = 0 \implies \Delta K + \Delta U = 0 \implies \Delta K = - \Delta U##. Does that have something to do with this equation? Would that also mean that work done by conservative forces is equal to the change in kinetic energy? What I am thinking: It kind of does make sense. Let's say we have a conservative force. Then work done by it is ##W_c = \int_{a}^{b} \vec{F} \cdot \vec{dl}##. If ##W_c > 0## then it helps object's motion so work done by it would actually increase object's velocity. So if there are no other forces, all the work done would go into change of kinetic energy. But how does that relate to the change in potential energy? I would just like to hear a kind of intuitive argument to why this connects to the previous equation (##\Delta K = - \Delta U##) if I'm right. Not just mathematically, but an example.

Thanks in advance.
 
Physics news on Phys.org
One of the ways a conservative force ##\mathbf F## is defined is that it can be derived by a scalar potential energy ##U##. In three dimensions, one would write $$\mathbf F=-\mathbf{\nabla}U.$$ So it's a matter of definition. Note that you can the potential energy if you know the force using a line integral, $$U(\mathbf r)=-\int_{\mathbf{r}_{\text{ref}}}^{\mathbf r}\mathbf F\cdot d\mathbf r$$where ##{\mathbf{r}_{\text{ref}}}## is the point where the potential energy is assumed to be zero.

Consider this example. A mass fall from rest and hits the floor at distance ##h## below. Find the landing speed of the mass.

You can use the work-energy theorem and say that the change in kinetic energy of the mass is equal to the net work done on it. Here gravity is the only force that does work. So you write $$\begin{align}
& \Delta K=W_{\text{grav}} \nonumber \\
& \left(\frac{1}{2}mv^2-0\right)=mgh.
\end{align}$$If you want to use energy considerations, you would write
$$\begin{align}
& \Delta K+\Delta U=0 \nonumber \\
& \left(\frac{1}{2}mv^2-0\right)+\left(0-mgh\right) =0.
\end{align}$$ Equations (1) and (2) are algebraically identical. However, the work done by gravity on the right side of equation (1) becomes the negative of the change in potential energy on the left side of equation (2).
 
  • Like
Likes Heisenberg7
Thread 'Why higher speeds need more power if backward force is the same?'
Power = Force v Speed Power of my horse = 104kgx9.81m/s^2 x 0.732m/s = 1HP =746W Force/tension in rope stay the same if horse run at 0.73m/s or at 15m/s, so why then horse need to be more powerfull to pull at higher speed even if backward force at him(rope tension) stay the same? I understand that if I increase weight, it is hrader for horse to pull at higher speed because now is backward force increased, but don't understand why is harder to pull at higher speed if weight(backward force)...

Similar threads

Replies
9
Views
2K
  • · Replies 77 ·
3
Replies
77
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 54 ·
2
Replies
54
Views
6K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 48 ·
2
Replies
48
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 27 ·
Replies
27
Views
4K