Work done in moving a body up an incline

Click For Summary
SUMMARY

The discussion centers on calculating the work done by a person moving a 100N block up a 37-degree incline over a distance of 2m. The correct work done is determined to be 238.09J when considering the applied force parallel to the incline. The participants clarify that the work done by external forces, excluding gravity, equals the change in mechanical energy of the system. Misunderstandings about the application of the work formula and the orientation of axes are addressed, leading to the conclusion that the work done is indeed 120J when calculated correctly.

PREREQUISITES
  • Understanding of Newton's laws of motion
  • Familiarity with the concept of work and energy in physics
  • Knowledge of trigonometric functions related to angles in incline problems
  • Ability to solve equations involving forces and motion
NEXT STEPS
  • Study the concept of work-energy theorem in physics
  • Learn about the calculation of forces on inclined planes
  • Explore the implications of conservative and non-conservative forces
  • Practice solving problems involving mechanical energy changes in systems
USEFUL FOR

Students studying physics, educators teaching mechanics, and anyone interested in understanding work calculations in inclined plane scenarios.

rudransh verma
Gold Member
Messages
1,067
Reaction score
96
Homework Statement
A block of 100N weight is slowly slid up on a smooth incline of inclination 37 degrees by a person. Calculate the work done by the person in moving the block through a distance of 2m, if the driving force is a) parallel to the incline and b) in the horizontal direction.
Relevant Equations
##W=F.d##
##W=mgh=100(\sin 37)2=-120J## Right answer!
But the question is asking work done by the person. So again I wrote two eqns
##F_N\sin 53+F_D\sin 37-100=10.2a_y##
##F_N\cos 53-F_D\cos 37=-10.2a_x##
I just need ##a_x## and ##a_y## to solve.
 

Attachments

  • fdgdf.png
    fdgdf.png
    6.8 KB · Views: 137
Last edited:
Physics news on Phys.org
Did you check your dimensions ?

"slowly" means ##a=0##.

##\ ##
 
BvU said:
Did you check your dimensions ?

"slowly" means ##a=0##.

##\ ##
If net force is zero then work done by the person W=238.09J
Where have I done wrong?
 
rudransh verma said:
If net force is zero then work done by the person W=238.09J
Where have I done wrong?
Isn't work done by external force(s) excluding gravity equal to the change in mechanical energy of the system i.e. block in this case? Work must manifest as an increase or decrease of an equal amount of energy.
 
rudransh verma said:
If net force is zero then work done by the person W=238.09J
Where have I done wrong?
No idea. You don't tell us what you are doing, you only give us a numerical result.

[edit] did you notice there is a part a) and a part b) in this exercise ?
 
vcsharp2003 said:
Isn't work done by external force(s) excluding gravity equal to the change in mechanical energy of the system i.e. block in this case?
Yeah! But we can simply use ##W=F.d=F_D.d=-119.04*-2=238.09J##
 
How is work defined ? Which way is the force ?
 
BvU said:
How is work defined ? Which way is the force ?
a) says parallel to incline. So ##F_D## is anti parallel to positive x-axis as well as displacement. So both will be -ve.
##W=\vec F.\vec d##
 
rudransh verma said:
Yeah! But we can simply use ##W=F.d=F_D.d=-119.04*-2=238.09J##
I would think that the shortest and easiest way to solve this problem would be to find the change in total mechanical energy.

You could alternately solve it by determining the applied force by person, but it would involve more involved calculations.
 
  • #10
rudransh verma said:
Homework Statement:: A block of 100N weight is slowly slid up on a smooth incline of inclination 37 degrees by a person. Calculate the work done by the person in moving the block through a distance of 2m, if the driving force is a) parallel to the incline and b) in the horizontal direction.
Relevant Equations:: ##W=F.d##

W=mgh=100(\sin 37)2=-120J Right answer!
But the question is asking work done by the person. So again I wrote two eqns
##F_N\sin 53+F_D\sin 37-100=10.2a_y##
##F_N\cos 53-F_D\cos 37=-10.2a_x##
I just need ##a_x## and ##a_y## to solve.
For incline plane problems, wouldn't it be more convenient to take x-axis as parallel to the incline and y-axis as perpendicular to the incline? You have taken the horizontal axis as x-axis and the vertical axis as y axis.
 
  • #11
vcsharp2003 said:
I would think that the shortest and easiest way to solve this problem would be to find the change in total mechanical energy.
Then ##W_{ext}=\Delta E=U_f+K_f-U_i-K_i=U_f-U_i=mgh=100(1.2)=120J##
Same for b)

I have two questions
1) Is normal force not a non conservative force?
2) why W=F.d doesn’t work here?
 
  • #12
1) no
2) it works perfectly well
 
  • #13
BvU said:
2) it works perfectly well
But ##W=F_D.d= -119.04*-2=238.09 J##.
By the way I have taken standard orientation of xy axis along the horizontal and vertical. But when I am using the formula for work I am taking incline as my x axis.
 
Last edited:
  • #14
BvU said:
it works perfectly well
Got it! Some blunder in calculation W=120J
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
8K
Replies
10
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
7
Views
3K