MHB Work energy principle and power

Shah 72
MHB
Messages
274
Reaction score
0
A car of mass 1200 kg accelerates up a hill inclined at 10 degree to the horizontal. The car has initial speed of 10 m/ s and final speed of 12 m/s after 60 s. Air resistance and friction may be ignored. Find the average power generated by the engine.
The and in the textbook is 36000 W, iam not able to do. Pls help
 
Mathematics news on Phys.org
Shah 72 said:
A car of mass 1200 kg accelerates up a hill inclined at 10 degree to the horizontal. The car has initial speed of 10 m/ s and final speed of 12 m/s after 60 s. Air resistance and friction may be ignored. Find the average power generated by the engine.
The and in the textbook is 36000 W, iam not able to do. Pls help
Again what have you been able to do? You've posted a large number of these questions and have learned nothing about how to start? How about a diagram and a statement of the work energy theorem? See what you can do, then if you still are getting an incorrect answer post what you have done and we can look it over.

-Dan
 
topsquark said:
Again what have you been able to do? You've posted a large number of these questions and have learned nothing about how to start? How about a diagram and a statement of the work energy theorem? See what you can do, then if you still are getting an incorrect answer post what you have done and we can look it over.

-Dan
Iam getting the ans 31180W, but textbook ans is 3600W
I first calculated acceleration using v= u+at and got a= 0.033m/s^2
Then calculated F- 16000sin10=1600×0.033 and got the ans F=2831.7N
Then calculated s using v^2= u^2+2as and got s= 660.67m
Avg power= work done/ time
Iam not getting the right ans. Pls help
 
A car of mass 1200 kg accelerates up a hill inclined at 10 degree to the horizontal. The car has initial speed of 10 m/ s and final speed of 12 m/s after 60 s. Air resistance and friction may be ignored. Find the average power generated by the engine.

Shah 72 said:
Iam getting the ans 31180W, but textbook ans is 3600W

Well, I'm not getting either of those values. First off, some basic values ...

$a = \dfrac{\Delta v}{\Delta t} = \dfrac{1}{30} \, m/s^2$

$v_{avg} = \dfrac{v_0+v_f}{2} = 11 \, m/s$

$\Delta x = v_{avg} \cdot \Delta t = 660 \, m$method 1

$P_{avg} = \dfrac{\text{total work done by the engine}}{\text{elapsed time}}$

$P = \dfrac{\Delta KE + \Delta GPE}{\Delta t}$

$\color{red} P = \dfrac{\frac{1}{2}m(v_f^2-v_0^2) + mg \Delta x \cdot \sin{\theta}}{\Delta t}$

method 2

$P_{avg} = (\text{force exerted by the engine})(\text{avg velocity}) = F_e \cdot v_{avg}$

$F_e - mg\sin{\theta} = ma \implies F_e = m(g\sin{\theta} + a)$

$\color{red} P = m(g\sin{\theta}+a) \cdot v_{avg}$
 
skeeter said:
Well, I'm not getting either of those values. First off, some basic values ...

$a = \dfrac{\Delta v}{\Delta t} = \dfrac{1}{30} \, m/s^2$

$v_{avg} = \dfrac{v_0+v_f}{2} = 11 \, m/s$

$\Delta x = v_{avg} \cdot \Delta t = 660 \, m$method 1

$P_{avg} = \dfrac{\text{total work done by the engine}}{\text{elapsed time}}$

$P = \dfrac{\Delta KE + \Delta GPE}{\Delta t}$

$\color{red} P = \dfrac{\frac{1}{2}m(v_f^2-v_0^2) + mg \Delta x \cdot \sin{\theta}}{\Delta t}$

method 2

$P_{avg} = (\text{force exerted by the engine})(\text{avg velocity}) = F_e \cdot v_{avg}$

$F_e - mg\sin{\theta} = ma \implies F_e = m(g\sin{\theta} + a)$

$\color{red} P = m(g\sin{\theta}+a) \cdot v_{avg}$
Thank you!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
1K
Replies
1
Views
851
Replies
3
Views
1K
Replies
1
Views
1K
Replies
16
Views
2K
Replies
9
Views
1K
Replies
8
Views
2K
Replies
17
Views
1K
Replies
2
Views
1K
Back
Top