MHB Work energy principle and power

Click For Summary
The discussion focuses on a physics problem involving two particles connected by a string over a pulley. The tension in the string is expressed as T = 40m/(m+2) N, derived from simultaneous equations based on the forces acting on the particles. The work-energy principle is applied to determine how high particle X rises after being released, with the work done by tension calculated as W = T * 1.2 meters. There is a request for clarification on the definitions of tension (T) and acceleration (a) in the equations provided. The conversation highlights the importance of clear notation in problem-solving.
Shah 72
MHB
Messages
274
Reaction score
0
Particle X of mass 2 kg , and particle Y of mass m kg are attached to the ends of a light inextensible string of length 4.8m. The string passes over a fixed smooth pulley and hangs vertically either side of the pulley. Particle X is held at ground level, 3m below the pulley. Particle X is released and rises while particle Y descends to the ground

a) Find an expression in terms of m for the tension in the string while both particles are moving.
By getting two equations
T-20=2a and T-10m=-ma
Solving simultaneously and removing a I got mT+2T-40m=0,
I finally got T=40m/(m+2) N
b) use work energy principle to find how close particle X gets to the pulley in subsequent motion.
Iam not able to get this ans. Pls help
 
Mathematics news on Phys.org
work done on the 2kg mass by the force of tension ...

$W = (T \, Newtons) \cdot (1.2 \, meters) = 2gH$, where $H$ is the highest point mass X rises above ground level.
 
skeeter said:
work done on the 2kg mass by the force of tension ...

$W = (T \, Newtons) \cdot (1.2 \, meters) = 2gH$, where $H$ is the highest point mass X rises above ground level.
Thanks!
 
The problem I have with
"a) Find an expression in terms of m for the tension in the string while both particles are moving.
By getting two equations
T-20=2a and T-10m=-ma"
is that you have not said what either "T" nor "a" are!

I can guess that "T" is the tension in the string and that "a" is the acceleration of the particles but you really should have said thar.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
892
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K