MHB Work energy principle and power

AI Thread Summary
The discussion focuses on a physics problem involving two particles connected by a string over a pulley. The tension in the string is expressed as T = 40m/(m+2) N, derived from simultaneous equations based on the forces acting on the particles. The work-energy principle is applied to determine how high particle X rises after being released, with the work done by tension calculated as W = T * 1.2 meters. There is a request for clarification on the definitions of tension (T) and acceleration (a) in the equations provided. The conversation highlights the importance of clear notation in problem-solving.
Shah 72
MHB
Messages
274
Reaction score
0
Particle X of mass 2 kg , and particle Y of mass m kg are attached to the ends of a light inextensible string of length 4.8m. The string passes over a fixed smooth pulley and hangs vertically either side of the pulley. Particle X is held at ground level, 3m below the pulley. Particle X is released and rises while particle Y descends to the ground

a) Find an expression in terms of m for the tension in the string while both particles are moving.
By getting two equations
T-20=2a and T-10m=-ma
Solving simultaneously and removing a I got mT+2T-40m=0,
I finally got T=40m/(m+2) N
b) use work energy principle to find how close particle X gets to the pulley in subsequent motion.
Iam not able to get this ans. Pls help
 
Mathematics news on Phys.org
work done on the 2kg mass by the force of tension ...

$W = (T \, Newtons) \cdot (1.2 \, meters) = 2gH$, where $H$ is the highest point mass X rises above ground level.
 
skeeter said:
work done on the 2kg mass by the force of tension ...

$W = (T \, Newtons) \cdot (1.2 \, meters) = 2gH$, where $H$ is the highest point mass X rises above ground level.
Thanks!
 
The problem I have with
"a) Find an expression in terms of m for the tension in the string while both particles are moving.
By getting two equations
T-20=2a and T-10m=-ma"
is that you have not said what either "T" nor "a" are!

I can guess that "T" is the tension in the string and that "a" is the acceleration of the particles but you really should have said thar.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
1
Views
859
Replies
2
Views
1K
Replies
4
Views
1K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
16
Views
2K
Replies
9
Views
1K
Replies
17
Views
1K
Replies
8
Views
2K
Replies
2
Views
1K
Back
Top