MHB Work energy principle and power

Shah 72
MHB
Messages
274
Reaction score
0
Particle X of mass 2 kg , and particle Y of mass m kg are attached to the ends of a light inextensible string of length 4.8m. The string passes over a fixed smooth pulley and hangs vertically either side of the pulley. Particle X is held at ground level, 3m below the pulley. Particle X is released and rises while particle Y descends to the ground

a) Find an expression in terms of m for the tension in the string while both particles are moving.
By getting two equations
T-20=2a and T-10m=-ma
Solving simultaneously and removing a I got mT+2T-40m=0,
I finally got T=40m/(m+2) N
b) use work energy principle to find how close particle X gets to the pulley in subsequent motion.
Iam not able to get this ans. Pls help
 
Mathematics news on Phys.org
work done on the 2kg mass by the force of tension ...

$W = (T \, Newtons) \cdot (1.2 \, meters) = 2gH$, where $H$ is the highest point mass X rises above ground level.
 
skeeter said:
work done on the 2kg mass by the force of tension ...

$W = (T \, Newtons) \cdot (1.2 \, meters) = 2gH$, where $H$ is the highest point mass X rises above ground level.
Thanks!
 
The problem I have with
"a) Find an expression in terms of m for the tension in the string while both particles are moving.
By getting two equations
T-20=2a and T-10m=-ma"
is that you have not said what either "T" nor "a" are!

I can guess that "T" is the tension in the string and that "a" is the acceleration of the particles but you really should have said thar.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
851
Replies
2
Views
1K
Replies
4
Views
1K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
16
Views
2K
Replies
9
Views
1K
Replies
17
Views
1K
Replies
8
Views
2K
Replies
2
Views
1K
Back
Top