Work of a non conservative field

Granger
Messages
165
Reaction score
7

Homework Statement


Compute the work of the vector field $$H: \mathbb{R^2} \setminus{(0,0}) \to \mathbb{R}$$

$$H(x,y)=\bigg(y^2-\frac{y}{x^2+y^2},1+2xy+\frac{x}{x^2+y^2}\bigg)$$

in the path $$g(t) = (1-t^2, t^2+t-1)$ with $t\in[-1,1]$$

Homework Equations


3. The Attempt at a Solution [/B]

So first I considered my vector field as a sum of 2 vector fields: $$H = F + G$$

$$F(x,y)=\bigg(y^2,1+2xy\bigg)$$

$$G(x,y)=\bigg(-\frac{y}{x^2+y^2},\frac{x}{x^2+y^2}\bigg)$$

The vector field $$F$$ is conservative with one of many potentials $$A(x,y) = y^2x+y$$
Then I worked out the work using the definition and fundamental theorem of calculus obtaining the value 2.

So no problems at this point.

But $$G$$ is not a conservative vector field (it doesn't have a potential, even though it's a closed field). How should I proceed? I tried the definition but we get to a very complicated integral... The path isn't closed so we can't apply Green's theorem... What should I do?
 
Physics news on Phys.org
Granger said:

Homework Statement


Compute the work of the vector field $$H: \mathbb{R^2} \setminus{(0,0}) \to \mathbb{R}$$

$$H(x,y)=\bigg(y^2-\frac{y}{x^2+y^2},1+2xy+\frac{x}{x^2+y^2}\bigg)$$

in the path $$g(t) = (1-t^2, t^2+t-1)$ with $t\in[-1,1]$$

Homework Equations


3. The Attempt at a Solution [/B]

So first I considered my vector field as a sum of 2 vector fields: $$H = F + G$$

$$F(x,y)=\bigg(y^2,1+2xy\bigg)$$

$$G(x,y)=\bigg(-\frac{y}{x^2+y^2},\frac{x}{x^2+y^2}\bigg)$$

The vector field $$F$$ is conservative with one of many potentials $$A(x,y) = y^2x+y$$
Then I worked out the work using the definition and fundamental theorem of calculus obtaining the value 2.

So no problems at this point.

But $$G$$ is not a conservative vector field (it doesn't have a potential, even though it's a closed field). How should I proceed? I tried the definition but we get to a very complicated integral... The path isn't closed so we can't apply Green's theorem... What should I do?

What is preventing you from just going ahead and computing ##\int_{-1}^1 \vec{H}(t) \cdot \nabla g(t) \, dt?##
 
Ray Vickson said:
What is preventing you from just going ahead and computing ##\int_{-1}^1 \vec{H}(t) \cdot \nabla g(t) \, dt?##

You mean H(g(t)) (with the vector sign). Because the integral gets complicated.
 
Granger said:
You mean H(g(t)) (with the vector sign). Because the integral gets complicated.

Yes, I know, but if you simplify the integrand first (to a single ratio of two polynomials) you DO get a tractable integral that is not too bad. (The integral is horrible if you do not simplify the integrand first.) For example, you could submit the integration to Wolfram Alpha and get a usable answer. Alternatively, you could use a numerical integration method to get a numerical answer to as much accuracy as you want.

Basically, the integral is complicated, and that's life. Sometimes problems are not easy, and we just have to deal with them anyway.
 

Similar threads

Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
10
Views
3K
Replies
3
Views
2K
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K